贝叶斯评级系统每个评级有多个类别
我正在实施一个要在我的网站上使用的评级系统,我认为贝叶斯平均值是最好的方法。每个项目将由用户分为六个不同的类别进行评分。不过,我不希望只有一个高评级的项目登上顶峰,这就是我想实施贝叶斯系统的原因。
公式如下:
Bayesian Rating = ( (avg_num_votes * avg_rating) + (this_num_votes * this_rating) ) / (avg_num_votes + this_num_votes)
因为项目将被分为 6 个不同的类别,我是否应该使用这些类别总和的平均值作为贝叶斯系统的“this_ rating”?例如,假设一项有两个评级(范围为 0-5):
Rating 1:
Category A: 3
Category B: 1
Category C: 2
Category D: 4
Category E: 5
Category F: 3
Sum: 18
Rating 2:
Category A: 2
Category B: 3
Category C: 3
Category D: 5
Category E: 0
Category F: 1
Sum: 14
“this_ rating”是否应该只是上面列出的总和的平均值?我的想法是否正确,或者也应该为每个类别实施贝叶斯系统(或者是想太多了)?
I'm implementing a rating system to be used on my website, and I think the Bayesian average is the best way to go about it. Every item will be rated in six different categories by the users. I don't want items with only one high rating to shoot to the top though, which is why I want to implement a Bayesian system.
Here is the formula:
Bayesian Rating = ( (avg_num_votes * avg_rating) + (this_num_votes * this_rating) ) / (avg_num_votes + this_num_votes)
Because the items will be rated in 6 different categories, should I use the average of the sums of those categories as "this_rating" for the Bayesian system? For instance, take one item with two ratings (scale of 0-5):
Rating 1:
Category A: 3
Category B: 1
Category C: 2
Category D: 4
Category E: 5
Category F: 3
Sum: 18
Rating 2:
Category A: 2
Category B: 3
Category C: 3
Category D: 5
Category E: 0
Category F: 1
Sum: 14
Should "this_rating" be simply the average of the sums listed above? Is my thinking correct, or should a Bayesian system be implemented for each category as well (or is that overthinking it)?
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。
绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论