贝叶斯评级系统每个评级有多个类别

发布于 2024-09-14 15:53:33 字数 690 浏览 4 评论 0原文

我正在实施一个要在我的网站上使用的评级系统,我认为贝叶斯平均值是最好的方法。每个项目将由用户分为六个不同的类别进行评分。不过,我不希望只有一个高评级的项目登上顶峰,这就是我想实施贝叶斯系统的原因。

公式如下:

Bayesian Rating = ( (avg_num_votes * avg_rating) + (this_num_votes * this_rating) ) / (avg_num_votes + this_num_votes)

因为项目将被分为 6 个不同的类别,我是否应该使用这些类别总和的平均值作为贝叶斯系统的“this_ rating”?例如,假设一项有两个评级(范围为 0-5):

Rating 1:
  Category A: 3
  Category B: 1
  Category C: 2
  Category D: 4
  Category E: 5
  Category F: 3
  Sum: 18

Rating 2:
  Category A: 2
  Category B: 3
  Category C: 3
  Category D: 5
  Category E: 0
  Category F: 1
  Sum: 14

“this_ rating”是否应该只是上面列出的总和的平均值?我的想法是否正确,或者也应该为每个类别实施贝叶斯系统(或者是想太多了)?

I'm implementing a rating system to be used on my website, and I think the Bayesian average is the best way to go about it. Every item will be rated in six different categories by the users. I don't want items with only one high rating to shoot to the top though, which is why I want to implement a Bayesian system.

Here is the formula:

Bayesian Rating = ( (avg_num_votes * avg_rating) + (this_num_votes * this_rating) ) / (avg_num_votes + this_num_votes)

Because the items will be rated in 6 different categories, should I use the average of the sums of those categories as "this_rating" for the Bayesian system? For instance, take one item with two ratings (scale of 0-5):

Rating 1:
  Category A: 3
  Category B: 1
  Category C: 2
  Category D: 4
  Category E: 5
  Category F: 3
  Sum: 18

Rating 2:
  Category A: 2
  Category B: 3
  Category C: 3
  Category D: 5
  Category E: 0
  Category F: 1
  Sum: 14

Should "this_rating" be simply the average of the sums listed above? Is my thinking correct, or should a Bayesian system be implemented for each category as well (or is that overthinking it)?

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。
列表为空,暂无数据
我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
原文