下料问题

发布于 2024-09-14 08:33:08 字数 211 浏览 7 评论 0原文

有谁知道如何使用背包算法来实现这个问题的算法?

我目前使用的方法广泛使用了 LINQ 和 Collections of Collections 以及一些字典。对于那些不知道我在说什么的人,请查看切削库存问题。

Does anyone know how to implement the algorithm for this problem using the Knapsack algorithm?

The method I'm using at present makes extensive use of LINQ and Collections of Collections and a few Dictionaries. For those who dont know what I'm talking about check out The Cutting Stock Problem.

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。

评论(2

花开浅夏 2024-09-21 08:33:13

下面的代码将为您提供所有图案或剪裁组合以及允许的浪费。现在决定哪种模式将为您提供优化解决方案。仍在研究并试图弄清楚如何编写该算法。

using System;
using System.Collections.Generic;
using System.Linq;

namespace Bar_Cutting_Recursive
{
    public class BarCuts
    {
        public int[] Qty { get; set; }
        public double TotalLength { get; set; }
        public double Waste { get; set; }
       
        public String result()  // return output.
        {
            return $"{string.Join(", ", Qty)}, TL = {TotalLength}, Waste = {Waste:F2}";
        }
    }

    internal class Program
    {
        private static double[] BarCuts = {9,8,7,6};  // List of Bar Cuttings.
        private static int BarLength = 20;
        private static double WasteRqd = 4;
        private static List<BarCuts> CutCombs= new List<BarCuts>();
        static void Main(string[] args)
        {
            int[] limits = GetLimits(BarCuts);           
            AddToCollectionRecursive(limits);
            CutCombs.Sort(delegate(BarCuts w1, BarCuts w2) { return w1.Waste.CompareTo(w2.Waste); });

            foreach (var item in CutCombs)
                Console.WriteLine(item.result());
            Console.ReadLine();
        }

        static void AddToCollectionRecursive(params int[] limits)
        {
            AddTo(new List<int>(), limits, limits.Length - 1);
        }

        static void AddTo(IEnumerable<int> value, IEnumerable<int> counts, int left)
        {
            for (var i = 0; i < counts.First(); i++)    // should change the upper limit or some break in outermost level if total > 20.
            {
                var list = value.ToList();
                list.Add(i);
                if (left == 0)
                {
                    // nt added
                    double tl = Combination_Length(list);
                    if (tl > BarLength) { break; }

                    double waste = BarLength - tl;          // BarLength = avlb bar length.
                    if (waste <= WasteRqd)
                    {
                        CutCombs.Add(new BarCuts { Qty = list.ToArray(), TotalLength = tl, Waste = waste });
                    }

                }
                else
                {
                    AddTo(list, counts.Skip(1), left - 1);
                }
            }
        }

        static double Combination_Length(List<int> CutsQty)
        {
            double tl = 0;
            for (int j = 0; j < CutsQty.Count; j++)
                tl += CutsQty[j] * BarCuts[j];
            return tl;
        }

        static int[] GetLimits(double[] Cuts)
        {
            int[] L = new int[Cuts.Length];
            for (int i = 0;i < Cuts.Length;i++)
            {
                L[i] = Convert.ToInt32(BarLength / Cuts[i]) + 1;
            }
            return L;
        }
    }
}

Below code will give you all the patterns or cut combinations with your allowed waste. Now decide which of this pattern will give you the optimize solution. still researching and trying to figure out how to code that algorithm.

using System;
using System.Collections.Generic;
using System.Linq;

namespace Bar_Cutting_Recursive
{
    public class BarCuts
    {
        public int[] Qty { get; set; }
        public double TotalLength { get; set; }
        public double Waste { get; set; }
       
        public String result()  // return output.
        {
            return 
quot;{string.Join(", ", Qty)}, TL = {TotalLength}, Waste = {Waste:F2}";
        }
    }

    internal class Program
    {
        private static double[] BarCuts = {9,8,7,6};  // List of Bar Cuttings.
        private static int BarLength = 20;
        private static double WasteRqd = 4;
        private static List<BarCuts> CutCombs= new List<BarCuts>();
        static void Main(string[] args)
        {
            int[] limits = GetLimits(BarCuts);           
            AddToCollectionRecursive(limits);
            CutCombs.Sort(delegate(BarCuts w1, BarCuts w2) { return w1.Waste.CompareTo(w2.Waste); });

            foreach (var item in CutCombs)
                Console.WriteLine(item.result());
            Console.ReadLine();
        }

        static void AddToCollectionRecursive(params int[] limits)
        {
            AddTo(new List<int>(), limits, limits.Length - 1);
        }

        static void AddTo(IEnumerable<int> value, IEnumerable<int> counts, int left)
        {
            for (var i = 0; i < counts.First(); i++)    // should change the upper limit or some break in outermost level if total > 20.
            {
                var list = value.ToList();
                list.Add(i);
                if (left == 0)
                {
                    // nt added
                    double tl = Combination_Length(list);
                    if (tl > BarLength) { break; }

                    double waste = BarLength - tl;          // BarLength = avlb bar length.
                    if (waste <= WasteRqd)
                    {
                        CutCombs.Add(new BarCuts { Qty = list.ToArray(), TotalLength = tl, Waste = waste });
                    }

                }
                else
                {
                    AddTo(list, counts.Skip(1), left - 1);
                }
            }
        }

        static double Combination_Length(List<int> CutsQty)
        {
            double tl = 0;
            for (int j = 0; j < CutsQty.Count; j++)
                tl += CutsQty[j] * BarCuts[j];
            return tl;
        }

        static int[] GetLimits(double[] Cuts)
        {
            int[] L = new int[Cuts.Length];
            for (int i = 0;i < Cuts.Length;i++)
            {
                L[i] = Convert.ToInt32(BarLength / Cuts[i]) + 1;
            }
            return L;
        }
    }
}
信愁 2024-09-21 08:33:11

正如您给定的链接中提到的,这个问题实际上是 ILP 的一个实例,这通常是 NP 困难的。

直接来自维基百科:求解整数线性规划的高级算法包括:

As mentioned in your given link, this problem is in fact an instance of an ILP, which is NP-hard normally.

Directly from wikipedia: Advanced algorithms for solving integer linear programs include:

~没有更多了~
我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
原文