为什么用余弦计算弧的 x 值,用正弦计算 y 值?

发布于 2024-09-14 06:44:50 字数 776 浏览 12 评论 0原文

我试图理解这个 raphael.js 演示中的数学:

http://raphaeljs.com/pie.js< /a>

检查扇区方法:

function sector(cx, cy, r, startAngle, endAngle, params) {
    var x1 = cx + r * Math.cos(-startAngle * rad),
        x2 = cx + r * Math.cos(-endAngle * rad),
        y1 = cy + r * Math.sin(-startAngle * rad),
        y2 = cy + r * Math.sin(-endAngle * rad);
    return paper.path(["M", cx, cy, "L", x1, y1, "A", r, r, 0, +(endAngle - startAngle > 180), 0, x2, y2, "z"]).attr(params);
}

这是实际的演示: http://raphaeljs.com/pie.html

我的数学有点生疏,我正在尝试了解扇区函数 - 给定 startAngle 和 endAngle 参数(每个起点和终点值在 0 到 360 之间绘制圆弧),为什么这个函数有效?

I'm trying to understand the math on this raphael.js demo:

http://raphaeljs.com/pie.js

Checkout the sector method:

function sector(cx, cy, r, startAngle, endAngle, params) {
    var x1 = cx + r * Math.cos(-startAngle * rad),
        x2 = cx + r * Math.cos(-endAngle * rad),
        y1 = cy + r * Math.sin(-startAngle * rad),
        y2 = cy + r * Math.sin(-endAngle * rad);
    return paper.path(["M", cx, cy, "L", x1, y1, "A", r, r, 0, +(endAngle - startAngle > 180), 0, x2, y2, "z"]).attr(params);
}

This is the actual demo:
http://raphaeljs.com/pie.html

My math is a little rusty and I'm trying to understand the sector function - given the startAngle and endAngle parameters (each start and end point values between 0 and 360 drawing an arc), why does this function work?

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。

评论(4

北陌 2024-09-21 06:44:50

只要看看圆中的 sin 和 cos 实际上意味着
alt text

如果您有观点形成角度 alpha 的圆,cos alpha 是点的 x 部分,sin alpha 是 y 部分。

此图解释了为什么角度被否定。
替代文本

这意味着,您现在可以指定顺时针角度,这是大多数使用模拟时钟的人所喜欢的。

Just look at what sin and cos actually mean in a circle:
alt text

If you have a point on a circle which forms an angle alpha, the cos alpha is the x-part of the point a sin alpha is the y part.

This illustration explains, why the angle is negated.
alt text

It means, that you can now specify clockwise angles, which most people with analogue clocks prefer.

偏爱你一生 2024-09-21 06:44:50

这完全取决于您如何对待 startAngleendAngle。看起来这是将它们视为从水平线向右开始(即 0 度角指向东方)并顺时针方向移动(因此 45 度角指向东南方。

通常在数学中,我们考虑从水平线开始的角度向右,但逆时针增加......但是如果你让一个非数学家画一个角度,他们很可能会从垂直向上(即北)顺时针增加这看起来像是混合了:)有。这里没有真正的“错误”或“正确”答案 - 这都是定义问题。

由于图片很流行,以下是我描述的三个系统,每个系统都假设直线长度为 r:

普通数学:从 x 轴逆时针旋转

第一个图
(来源:arachsys.com

要求街上的人画一个角度(从 y 轴顺时针方向)

第二个图

此代码使用的角度(从 x 轴顺时针方向)

第三张图

It all depends on how you treat startAngle and endAngle. It looks like this is treating them as starting from horizontal to the right (i.e. an angle of 0 is pointing East) and going clockingwise (so an angle of 45 degrees is pointing South-East.

Usually in mathematics we consider angles starting from the horizontal to the right, but increasing anti-clockwise... but if you ask a non-mathematician to draw an angle, they may well treat it from vertically up (i.e. North) increasing clockwise. This looks like it's taking a mixture :) There's no really "wrong" or "right" answer here - it's all a matter of definition.

As pictures are popular, here are the three systems I've described, each assuming the line is of length r:

Normal mathematics: anti-clockwise from x-axis

First diagram
(source: arachsys.com)

Asking the man on the street to draw an angle (clockwise from y-axis)

Second diagram

The angles used by this code (clockwise from x-axis)

Third diagram

南渊 2024-09-21 06:44:50

因为以 (cx, cy) 为圆心,以 R 为半径的圆周上的任意点具有以下坐标(它直接从 cos 和 sin 几何定义得出 - 相应的内斜边和斜边的长度之间的比率):

x = cx + R*cos(a)
y = cy + R*sin(a) for  0 <= a < 2π

因此,对角度 a 进行限制,您可以定义任意的角度 a弧。

Because arbitrary point on circumference with center (cx, cy) and radius R has the following coordinate (it directly follows from cos and sin geometric definitions - ratio between lengths of corresponding cathetus and hypotenuse):

x = cx + R*cos(a)
y = cy + R*sin(a) for  0 <= a < 2π

So setting limits on angle a you can define arbitrary arc.

冷夜 2024-09-21 06:44:50

如果将 0° 作为水平方向,x 增加,90° 作为垂直方向,y 增加,则:

cos(0) = 1
sin(0) = 0

cos(90) = 0
sin(90) = 1

您可以通过乘以余弦来改变 x 值,并通过乘以正弦来改变 y 值。

If you take 0° as horizontal with x increasing and 90° as vertical with y increasing then as:

cos(0) = 1
sin(0) = 0

cos(90) = 0
sin(90) = 1

you can vary the x value by multiplying it by the cosine and vary the y value by multiplying it by the sine.

~没有更多了~
我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
原文