一组值的所有可能分组的数量?
我想找到一个组合公式,给定一定数量的整数,我可以找到这些整数的所有可能分组的数量(这样所有值都属于一个组)
假设我有 3 个整数,1,2,3 将有 5 个分组:
1 2 3
1|2|3|
1 2|3
1|2 3
2|1 3
我已经通过计算计算了 N = 3 到 11 的这些分组,但我试图从理论上进行断言。这些值是:(我相信它们是正确的)
num_integers num_groupings
3 5
4 15
5 52
6 203
7 877
8 4140
9 21147
10 115975
11 678570
这样做的原因是为了找到完整图的分区总数。
任何建议或参考将不胜感激
I want to find a combinatorial formula that given a certain number of integers, I can find the number of all possible groupings of these integers (such that all values belong to a single group)
Say I have 3 integers, 1, 2, 3
There would be 5 groupings:
1 2 3
1|2|3|
1 2|3
1|2 3
2|1 3
I have calculated these computationally for N = 3 to 11, but I am trying to theoretically assertain. These values are: (I believe they are correct)
num_integers num_groupings
3 5
4 15
5 52
6 203
7 877
8 4140
9 21147
10 115975
11 678570
The reason for doing this is to find the total number of partitionings of a complete graph.
Any advice, or references would be appreciated
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。
绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论
评论(2)
您正在寻找的是设置分区。您要查找的计数是贝尔数,请参阅维基百科文章。
What you are looking for is Set Partitons. The counts that you are looking for are Bell numbers, see the wikipedia article.
这称为响铃号码。当您有不知道的整数序列时,请查看此处 - OEIS。
This is called the Bell number. When you have integer sequences you don't know about look here - OEIS.