数据库和数据仓库有什么区别?

发布于 2024-09-13 19:35:18 字数 71 浏览 10 评论 0原文

数据库和数据仓库有什么区别?

它们不是相同的东西,或者至少是用相同的东西(即Oracle RDBMS)编写的吗?

What is the difference between a database and a data warehouse?

Aren't they the same thing, or at least written in the same thing (ie. Oracle RDBMS)?

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。

评论(13

疯狂的代价 2024-09-20 19:35:18

查看了解更多信息。

来自之前的链接:

数据库

  1. 用于在线事务处理(OLTP)但可以用于其他目的,例如数据仓库。这会记录用户的数据以供历史记录。
  2. 表和联接很复杂,因为它们是标准化的(对于 RDMS)。这样做是为了减少冗余数据并节省存储空间。
  3. 实体 – 关系建模技术用于 RDMS 数据库设计。
  4. 针对写操作进行了优化。
  5. 分析查询的性能较低。

数据仓库

  1. 用于在线分析处理(OLAP)。这会读取用户的历史数据以进行业务决策。
  2. 表和连接很简单,因为它们是非规范化的。这样做是为了减少分析查询的响应时间。
  3. 数据——建模技术用于数据仓库设计。
  4. 针对读取操作进行了优化。
  5. 分析查询的高性能。
  6. 通常是一个数据库。

还需要注意的是,数据仓库可以源自零个到多个数据库。

Check out this for more information.

From a previous link:

Database

  1. Used for Online Transactional Processing (OLTP) but can be used for other purposes such as Data Warehousing. This records the data from the user for history.
  2. The tables and joins are complex since they are normalized (for RDMS). This is done to reduce redundant data and to save storage space.
  3. Entity – Relational modeling techniques are used for RDMS database design.
  4. Optimized for write operation.
  5. Performance is low for analysis queries.

Data Warehouse

  1. Used for Online Analytical Processing (OLAP). This reads the historical data for the Users for business decisions.
  2. The Tables and joins are simple since they are de-normalized. This is done to reduce the response time for analytical queries.
  3. Data – Modeling techniques are used for the Data Warehouse design.
  4. Optimized for read operations.
  5. High performance for analytical queries.
  6. Is usually a Database.

It's important to note as well that Data Warehouses could be sourced from zero to many databases.

梦晓ヶ微光ヅ倾城 2024-09-20 19:35:18

从非技术角度来看:
数据库仅限于特定的应用程序或一组应用程序。

数据仓库是企业级数据存储库。它将包含来自所有/许多业务部门的数据。它将共享这些信息以提供业务的全球概况。这对于业务不同部门之间的整合也至关重要。

从技术角度来看:
“数据仓库”一词尚未给出公认的定义。就我个人而言,我将数据仓库定义为数据集市的集合。其中每个数据集市由一个或多个数据库组成,其中数据库特定于特定问题集(应用程序、数据集或流程)。

简单地说,数据库是数据仓库的一个组件。有很多地方可以探索这个概念,但由于没有“定义”,所以你给出的任何答案都会遇到挑战。

From a Non-Technical View:
A database is constrained to a particular applications or set of applications.

A data warehouse is an enterprise level data repository. It's going to contain data from all/many segments of the business. It's going to share this information to provide a global picture of the business. It is also critical to integration between the different segments of the business.

From a Technical view:
The word "Data Warehouse" has been given no recognized definition. Personally, I define a data warehouse as a collection of data-marts. Where each data-mart consists of one or more databases where the database is specific to a specific problem set (application, data-set or process).

Simply put a database is a component of a data-warehouse. There are many places to explore this concept, but because there is no "definition", you will find challenges with any answer you give.

绅士风度i 2024-09-20 19:35:18

数据仓库是数据库的一种类型。

除了人们已经说过的之外,数据仓库往往是 OLAP,索引等调整为读取而不是写入,并且数据被非规范化/转换为更易于读取和存储的形式。分析。

有些人说“数据库”与 OLTP 相同,但事实并非如此。 OLTP 也是数据库的一种类型。

其他类型的“数据库”:文本文件、XML、Excel、CSV...、平面文件:-)

A data warehouse is a TYPE of database.

In addition to what folks have already said, data warehouses tend to be OLAP, with indexes, etc. tuned for reading, not writing, and the data is de-normalized / transformed into forms that are easier to read & analyze.

Some folks have said "databases" are the same as OLTP -- this isn't true. OLTP, again, is a TYPE of database.

Other types of "databases": Text files, XML, Excel, CSV..., Flat Files :-)

看海 2024-09-20 19:35:18

最简单的解释方法是,数据仓库不仅仅包含数据库。数据库是以某种方式组织的数据集合,但数据仓库是专门为了“促进报告和分析”而组织的。然而,这并不是故事的全部,因为数据仓库还包含“检索和分析数据、提取、转换和加载数据以及管理数据字典的方法也被认为是数据仓库系统的重要组成部分”。

数据仓库

The simplest way to explain it would be to say that a data warehouse consists of more than just a database. A database is an collection of data organized in some way, but a data warehouse is organized specifically to "facilitate reporting and analysis". This however is not the entire story as data warehousing also contains "the means to retrieve and analyze data, to extract, transform and load data, and to manage the data dictionary are also considered essential components of a data warehousing system".

Data Warehouse

时间海 2024-09-20 19:35:18

数据仓库与数据库:数据仓库是专门为数据分析而设计的,其中涉及读取大量数据以了解数据之间的关系和趋势。数据库用于捕获和存储数据,例如记录交易的详细信息。

数据仓库:
合适的工作负载
- 分析、报告、大数据。
数据源 - 从多个来源收集并标准化的数据。
数据捕获 - 通常按照预定的批处理计划进行批量写入操作。
数据规范化 - 非规范化模式,例如星型模式或雪花模式。
数据存储 - 针对访问简单性和高速查询进行了优化。使用列式存储的性能。
数据访问 - 经过优化,可最大限度地减少 I/O 并最大限度地提高数据吞吐量。

交易数据库:
合适的工作负载
- 事务处理。
数据源 - 从单一来源(例如事务系统)按原样捕获的数据。
数据捕获 - 针对连续写入操作进行优化,因为新数据可用,以最大限度地提高事务吞吐量。
数据规范化 - 高度规范化的静态模式。
数据存储 - 针对单个面向行的物理块的高吞吐量写入操作进行了优化。
数据访问 - 大量小型读取操作。

Data Warehouse vs Database: A data warehouse is specially designed for data analytics, which involves reading large amounts of data to understand relationships and trends across the data. A database is used to capture and store data, such as recording details of a transaction.

Data Warehouse:
Suitable workloads
- Analytics, reporting, big data.
Data source - Data collected and normalized from many sources.
Data capture - Bulk write operations typically on a predetermined batch schedule.
Data normalization - Denormalized schemas, such as the Star schema or Snowflake schema.
Data storage - Optimized for simplicity of access and high-speed query. performance using columnar storage.
Data access - Optimized to minimize I/O and maximize data throughput.

Transactional Database:
Suitable workloads
- Transaction processing.
Data source - Data captured as-is from a single source, such as a transactional system.
Data capture - Optimized for continuous write operations as new data is available to maximize transaction throughput.
Data normalization - Highly normalized, static schemas.
Data storage - Optimized for high throughout write operations to a single row-oriented physical block.
Data access - High volumes of small read operations.

心房敞 2024-09-20 19:35:18

数据库:-
OLTP(在线事务处理)

  • 是当前数据、最新详细数据、扁平关系
    孤立的数据。
  • 实体关系用于设计数据库数据库
  • 大小100MB-GB简单事务或查询

数据仓库

  • OLAP(在线分析过程)
  • 它是关于历史数据星型模式,雪弯模式和星系
  • 模式用于设计数据库
    数据仓库
  • DB 大小 100GB-TB 改进的查询性能基础
    用于数据挖掘数据可视化
  • 使用户能够更深入地了解和了解各种
    通过快速、一致、交互式访问了解公司数据的各个方面
    各种可能的数据视图

DataBase :-
OLTP(online transaction process)

  • It is current data, up-to-date detailed data, flat relational
    isolated data.
  • Entity relationship is used to design the database
  • DB size 100MB-GB simple transaction or quires

Datawarehouse

  • OLAP(Online Analytical process)
  • It is about Historical data Star schema,snow flexed schema and galaxy
  • schema is used to design the
    data warehouse
  • DB size 100GB-TB Improved query performance foundation
    for DATA MINING DATA VISUALIZATION
  • Enables users to gain a deeper understanding and knowledge about various
    aspects of their corporate data through fast, consistent, interactive access
    to a wide variety of possible views of the data
-柠檬树下少年和吉他 2024-09-20 19:35:18

任何应用程序的数据存储通常都会使用数据库。它可以是关系数据库,也可以是当前流行的非 SQL 数据库。

数据仓库也是数据库。我们可以将数据仓库数据库称为专门用于公司分析报告目的的数据存储。
该数据用于关键业务决策。

组织好的数据有助于有效地报告和做出业务决策。

Any data storage for application generally uses the database. It could be relational database or no sql databases which are currently trending.

Data warehouse is also database. We can call data warehouse database as specialized data storage for the analytical reporting purposes for the company.
This data used for key business decision.

The organized data helps is reporting and taking business decision effectively.

假装不在乎 2024-09-20 19:35:18

数据库:

用于在线事务处理 (OLTP)。

  • 面向事务。
  • 面向应用。
  • 当前数据。
  • 详细数据。
  • 可扩展的数据。
  • 许多用户、管理员/操作人员。
  • 执行时间:短。

数据仓库:

用于在线分析处理 (OLAP)。

  • 面向分析。
  • 主题导向。
  • 史料。
  • 汇总数据。
  • 静态数据。
  • 管理员,用户不多。
  • 执行时间:长。

Database:

Used for Online Transactional Processing (OLTP).

  • Transaction-oriented.
  • Application oriented.
  • Current data.
  • Detailed data.
  • Scalable data.
  • Many Users, Administrators / Operational.
  • Execution time: short.

Data Warehouse:

Used for Online Analytical Processing (OLAP).

  • Oriented analysis.
  • Subject oriented.
  • Historical data.
  • Aggregated data.
  • Static data.
  • Not many users, manager.
  • Execution time: long.
々眼睛长脚气 2024-09-20 19:35:18

数据仓库 (DW) 是收集和管理来自不同来源的数据以提供有意义的业务见解的过程。数据仓库通常用于连接和分析来自异构源的业务数据。数据仓库是BI系统的核心,是为数据分析和报告而构建的。

A Data Warehousing (DW) is process for collecting and managing data from varied sources to provide meaningful business insights. A Data warehouse is typically used to connect and analyze business data from heterogeneous sources. The data warehouse is the core of the BI system which is built for data analysis and reporting.

七分※倦醒 2024-09-20 19:35:18

数据仓库的源可以是数据库集群,因为数据库用于在线事务处理,例如保存当前记录。但在数据仓库中,它存储用于在线分析处理的历史数据。

Source for the Data warehouse can be cluster of Databases, because databases are used for Online Transaction process like keeping the current records..but in Data warehouse it stores historical data which are for Online analytical process.

维持三分热 2024-09-20 19:35:18

数据仓库是一种通常驻留在数据库中的数据结构。数据仓库是指数据模型以及存储在其中的数据类型 - 为实现分析目的而建模的数据(数据模型)。

数据库可以归类为容纳数据的任何结构。传统上,这将是 RDBMS,如 Oracle、SQL Server 或 MySQL。然而,数据库也可以是 NoSQL 数据库(如 Apache Cassandra),或列式 MPP(如 AWS RedShift)。

您会看到数据库只是一个存储数据的地方;数据仓库是一种存储数据的特定方式,具有特定的用途,即提供分析查询服务。

OLTP 与 OLAP 并没有告诉您 DW 和数据库之间的区别,OLTP 和 OLAP 都驻留在数据库上。它们只是以不同的方式存储数据(不同的数据模型方法)并服务于不同的目的(OLTP - 记录事务,针对更新进行优化;OLAP - 分析信息,针对读取进行优化)。

A Data Warehouse is a type of Data Structure usually housed on a Database. The Data Warehouse refers the the data model and what type of data is stored there - data that is modeled (data model) to server an analytical purpose.

A Database can be classified as any structure that houses data. Traditionally that would be an RDBMS like Oracle, SQL Server, or MySQL. However a Database can also be a NoSQL Database like Apache Cassandra, or an columnar MPP like AWS RedShift.

You see a database is simply a place to store data; a data warehouse is a specific way to store data and serves a specific purpose, which is to serve analytical queries.

OLTP vs OLAP does not tell you the difference between a DW and a Database, both OLTP and OLAP reside on databases. They just store data in a different fashion (different data model methodologies) and serve different purposes (OLTP - record transactions, optimized for updates; OLAP - analyze information, optimized for reads).

唔猫 2024-09-20 19:35:18

用简单的话来说:
数据软件-->海量数据用于分析/存储/复制和分析。
数据库-->对常用数据进行CRUD操作。

数据仓库是一种你日常不使用的存储。数据库是您经常打交道的东西。

例如。如果我们询问银行对账单,那么它会为我们提供过去 3/4/6/更多个月的信息,因为它位于数据库中。如果您想要更多,它存储在 Dataware house 上。

See in simple words :
Dataware --> Huge data using for Analytical/storage/ copy and Analysis .
Database --> CRUD operation with Frequently used data .

Dataware house is Kind of storage which u are not using on daily basis & Database is something which your dealing frequently .

Eg. If we are asking statement of bank then it gives us for last 3/4/6/more months bcoz it is in database. If you want more than that it stores on Dataware house.

路弥 2024-09-20 19:35:18

示例:一套房子价值 100,000 美元,并且每年以 1000 美元 的速度升值。

要跟踪当前的房屋价值,您可以使用数据库,因为该价值每年都会发生变化。

三年后,您将能够看到房屋的价值 $103,000。

要跟踪历史房屋价值,您将使用数据仓库,因为房屋的价值应为

$100,000 on year 0, 
$101,000 on year 1, 
$102,000 on year 2, 
$103,000 on year 3. 

Example: A house is worth $100,000, and it is appreciating at $1000 per year.

To keep track of the current house value, you would use a database as the value would change every year.

Three years later, you would be able to see the value of the house which is $103,000.

To keep track of the historical house value, you would use a data warehouse as the value of the house should be

$100,000 on year 0, 
$101,000 on year 1, 
$102,000 on year 2, 
$103,000 on year 3. 
~没有更多了~
我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
原文