C++ 中的双精度(或战俘(2, 1000))
我正在参加 Project Euler,以温习我的 C++ 编码技能,为我们下学期将面临的编程挑战做好准备(因为他们不让我们使用 Python,嘘!)。
我在#16,我正在尝试找到一种方法来保持 2°°° 的真实精度
例如:
int main(){
double num = pow(2, 1000);
printf("%.0f", num):
return 0;
}
打印
1071508607186267320948425049060001810561405000000000000000000000000000000000000000000000000000000000000000000000000000000 00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 00000000000000000000000000000000000000000000000000000000000000
Which is missing most of the numbers (from python):
>>> 2**1000
10715086071862673209484250490600018105614048117055336074437503883703510511249361224931983788156958581275946729175531468 2518714528569231404359845775746985748039345677748242309854210746050623711418779541821530464749835819412673987675591655439 46077062914571196477686542167660429831652624386837205668069376L
Granted, I can write the program with a Python 1 liner
sum(int(_) for _ in str(2**1000))
that gives me the result immediately, but I'm trying to find a way to do it in C++.有什么指点吗? (哈哈...)
编辑:
标准库之外的东西对我来说毫无价值 - 在这些竞赛中只允许死树代码,而且我可能不会打印出 10,000 行外部代码...
I'm working on Project Euler to brush up on my C++ coding skills in preparation for the programming challenge(s) we'll be having this next semester (since they don't let us use Python, boo!).
I'm on #16, and I'm trying to find a way to keep real precision for 2¹°°°
For instance:
int main(){
double num = pow(2, 1000);
printf("%.0f", num):
return 0;
}
prints
10715086071862673209484250490600018105614050000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
Which is missing most of the numbers (from python):
>>> 2**1000
10715086071862673209484250490600018105614048117055336074437503883703510511249361224931983788156958581275946729175531468251871452856923140435984577574698574803934567774824230985421074605062371141877954182153046474983581941267398767559165543946077062914571196477686542167660429831652624386837205668069376L
Granted, I can write the program with a Python 1 liner
sum(int(_) for _ in str(2**1000))
that gives me the result immediately, but I'm trying to find a way to do it in C++. Any pointers? (haha...)
Edit:
Something outside the standard libs is worthless to me - only dead-tree code is allowed in those contests, and I'm probably not going to print out 10,000 lines of external code...
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。
绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论
评论(7)
如果您只跟踪字符数组中的每个数字,这很容易。将一位数字加倍是微不足道的,如果结果大于 10,您只需减去 10 并在下一位数字上添加进位即可。从值 1 开始,循环倍增函数 1000 次,就完成了。您可以使用
ceil(1000*log(2)/log(10))
预测所需的位数,或者直接动态添加它们。剧透警告:看来我必须展示代码才能有人相信我。这是一个 bignum 的简单实现,具有两个函数:Double 和 Display。为了简单起见,我没有将其作为一个类。这些数字以小端格式存储,最低有效数字在前。
If you just keep track of each digit in a char array, this is easy. Doubling a digit is trivial, and if the result is greater than 10 you just subtract 10 and add a carry to the next digit. Start with a value of 1, loop over the doubling function 1000 times, and you're done. You can predict the number of digits you'll need with
ceil(1000*log(2)/log(10))
, or just add them dynamically.Spoiler alert: it appears I have to show the code before anyone will believe me. This is a simple implementation of a bignum with two functions, Double and Display. I didn't make it a class in the interest of simplicity. The digits are stored in a little-endian format, with the least significant digit first.
您需要一个 bignum 库,例如这个。
You need a bignum library, such as this one.
您可能需要一个指针(双关语)。
在 C++ 中,您需要创建自己的 bigint lib 才能执行与 python 中相同的操作。
You probably need a pointer here (pun intended)
In C++ you would need to create your own bigint lib in order to do the same as in python.
C/C++ 对基本数据类型进行操作。您正在使用只有 64 位的
double
来存储 1000 位数字。double
使用 51 位作为有效数字,使用 11 位作为幅度。唯一的解决方案是使用其他地方提到的 bignum 之类的库,或者推出自己的库。
C/C++ operates on fundamental data types. You are using a
double
which has only 64 bits to store a 1000 bit number.double
uses 51 bit for the significant digits and 11 bit for the magnitude.The only solution for you is to either use a library like bignum mentioned elsewhere or to roll out your own.
更新:我刚刚浏览了欧拉问题网站,发现问题 13 是关于大整数求和。迭代方法在一段时间后可能会变得非常棘手,所以我建议使用问题#13中的代码,你应该已经解决了这个问题,因为
2**N => 2**(N-1) + 2**(N-1)
使用 bignums 是作弊行为,而不是解决方案。此外,您不需要计算 2**1000 或类似的值即可获得结果。我给你一个提示:
取 2**N 的前几个值:
现在写下每个数字的数字之和:
你应该注意到 (
x~=y
表示 x 和 y 具有相同的数字和)现在编写一个循环。
欧拉计划 = 先思考再计算!
UPDATE: I just browsed to the Euler Problem site and found that Problem 13 is about summing large integers. The iterated method can become very tricky after a short while, so I'd suggest to use the code from Problem #13 you should have already to solve this, because
2**N => 2**(N-1) + 2**(N-1)
Using bignums is cheating and not a solution. Also, you don't need to compute 2**1000 or anything like that to get to the result. I'll give you a hint:
Take the first few values of 2**N:
Now write down for each number the sum of its digits:
You should notice that (
x~=y
means x and y have the same sum of digits)Now write a loop.
Project Euler = Think before Compute!
如果你想在实际的基础上做这类事情,你正在寻找一个任意精度的算术包。周围有很多,包括 NTL、lip,GMP 和 MIRACL。
如果您只是想为欧拉计划做点什么,您可以编写自己的代码来求幂。基本思想是将您的大数字存储在相当多的小块中,并在小块之间实现您自己的进位、借用等。
If you want to do this sort of thing on a practical basis, you're looking for an arbitrary precision arithmetic package. There are a number around, including NTL, lip, GMP, and MIRACL.
If you're just after something for Project Euler, you can write your own code for raising to a power. The basic idea is to store your large number in quite a few small pieces, and implement your own carries, borrows, etc., between the pieces.
pow(2, 1000)
本质上不就是 2 次左移 1000 次吗?它应该在双浮点数中具有精确的二进制表示形式。它不应该需要 bignum 库。Isn't
pow(2, 1000)
just 2 left-shifted 1000 times, essentially? It should have an exact binary representation in a double float. It shouldn't require a bignum library.