最小最大算法的伪代码

发布于 2024-09-12 02:24:14 字数 92 浏览 10 评论 0原文

我想获得最小最大算法的伪代码。我必须创建 2 个函数,def maxAgent(gameState, height) 和 minAgent。有没有人有正确且简单的伪代码。

I want to get the pseudocode for minmax algorithm. I have to make 2 functions, def maxAgent(gameState, depth) and minAgent. Is there any body who has the right and easy pseudocode for it.

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。

评论(2

维持三分热 2024-09-19 02:24:14

两个玩家 A 和 B 轮流玩。

我们给出了一个评分函数 f,用于评估给定的棋盘位置 P。f(P) 的值越大,对于 A 越好,对于 B 越差(即,f(P) 是对 P 对于 A 的“好”程度的估计)无需进行任何进一步的前瞻)。

考虑棋盘位置 P。

如果 P 是叶节点(即,P 是获胜位置或者我们已经按照我们想要的方式向前看了),那么我们返回 f(P) 作为该节点的分数。

否则 P 不是叶节点并且有子节点 C1, ..., Cn。我们递归地计算孩子们的分数,给出 S1, ..., Sn。

如果 A 在 P 处进行游戏,则 P 的得分为 max{S1, ..., Sn},因为 A 总是会最大化其优势。

如果 B 在 P 处进行比赛,则 P 的得分为 min{S1, ..., Sn},因为 B 总是会尽量减少 A 的优势。

这应该足以转化为代码。

完成此操作后,请查看 alpha-beta 修剪,这应该(大大)减少您需要执行的搜索量。 Alpha-beta 剪枝基于这样的想法:如果 A 推断 B 可以迫使 A 的最大优势为 M,那么考虑任何得分大于 M 的子树就没有意义,因为 B 永远不会允许 A 这个选择!

Two players, A and B, take turns to play.

We are given a scoring function f that evaluates a given board position, P. Larger values of f(P) are better for A and worse for B (i.e., f(P) is an estimate of how "good" P is for A without doing any further lookahead).

Consider a board position P.

If P is a leaf node (i.e., P is a winning position or we have looked as far ahead as we want to) then we return f(P) as the score for this node.

Otherwise P is not a leaf node and has children C1, ..., Cn. We recursively compute the scores for the children, giving S1, ..., Sn.

If A plays at P then the score for P is max{S1, ..., Sn} since A will always play to maximise his advantage.

If B plays at P then the score for P is min{S1, ..., Sn} since B will always play to minimise A's advantage.

That should be enough to turn into code.

Once you've done that, have a look at alpha-beta pruning, which should (drastically) reduce the amount of search you need to do. Alpha-beta pruning is based on the idea that if A deduces that B can play to force A's maximum advantage to be M, then there is no point in considering any subtree whose score is greater than M since B will never allow A that option!

那小子欠揍 2024-09-19 02:24:14

minmax 算法试图最大化玩家 A 的得分并最小化玩家 B 的得分。给定一个节点,您可以通过取得分的最大值(对于 A)或最小值(对于 B)来找到最佳游戏的最终结果后继节点。

假设叶节点有一个指定的获胜者(A 为 1,B 为 -1),而所有其他节点的得分均为 0。然后您可以使用类似以下内容计算 A 的最终获胜结果:

  getMaxScore(node) {
    score = node.score;
    for each child node 
       score = max(score, getMaxScore(node))  
    next

    return score;
  }

这是基本算法。一旦分数变为 1,您就可以短路评估,那么您就知道 A 获胜。

B 的算法相同,getMinScore,只是您使用 min 函数,如果短路,则查找 -1 。

The minmax algorithm tries to maximize the score for player A and minimize the score for player B. Given a node, you can find the final outcome from optimal play by taking the max (for A) or min (for B) of the score for successor nodes.

Assuming that the leaf nodes have an assigned winner (1 for A, -1 for B) while all other nodes have a score of 0. You can then compute the final winning outcome for A with something like

  getMaxScore(node) {
    score = node.score;
    for each child node 
       score = max(score, getMaxScore(node))  
    next

    return score;
  }

This is the basic algorithm. You can short-circuit the evaluation as soon as the score becomes 1 then you have a known win for A.

The algorithm is the same for B, getMinScore, only you use the min function, and if short-circuiting, look for -1.

~没有更多了~
我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
原文