医学成像是一个独立的编程专业吗?
抱歉,如果这是另一个没有回复的问题:),请随时关闭。关于SO有很多问题,例如:医学中使用的技术/语言/数据库与银行/工业等传统领域使用的技术/语言/数据库有很大不同吗?您可以听到回应或1)没有区别2)它是模糊和困难的缺乏标准。
但医学成像的吸引力不仅在于普遍关注:人文和科学。科学的。工作机会是严格且明显的。 C++/Сom/ActiveX/C#、一些开源库、DICOM/HL7、Python。它看起来像是一个独立的专业——你不需要在面试中解释你到底做了什么。
所以我的问题是:医学成像是一个看起来很陌生的独立专业吗?供应商是否大多朝着相同的方向发展,您可以在不改变企业世界观的情况下改变它们?或者它只是一种 C++ 编程,通常与其他一些图像处理、交易、驱动程序、操作互换。系统编程等?
Sorry if it's yet another question with no response:), feel free to close. There's a bunch of questions on SO like: does technology/language/database used in medicine is quite different from that used in traditional area like banking/industry etc. You can hear in response or 1) no difference 2) it's vague and hard according to lack of standards.
But medical imaging is attractive not only due to general concerns: humanistic & scientific. Job opportunities are strict and obvious. C++/Сom/ActiveX/C#, some open source libraries, DICOM/HL7, Python. It looks like a separate specialty - you don't need to explain on interview what exactly you did.
So my question is: Is medical imaging a separate specialty as it seems to stranger? Do the vendors mostly go in the same direction and you can change them without changing world view as it happens in enterprise? Or it is just kind of C++ programming which is usually interchanged with some other image processing, trading, drivers, op. system programming etc.?
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。
绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论
评论(1)
我想说编程是通用的。无论您是开发 Web 应用程序还是设计嵌入式系统,您都会面临类似的挑战。然而,某些方面确实发生了变化。在这种情况下,我想说的是,对算法的关注是医学成像与其他领域的不同之处。
我不是专家,但医学成像中肯定涉及一些高级数学和算法。例如,考虑图像配准 - 该领域使用的常见算法。 MI 专家不仅必须对配准有良好的数学理解,而且还必须能够轻松实施和优化它 - 这不是一项简单的任务。
I would say that programming is universal. Whether you're developing a web application or designing for an embedded system, you will face similar challenges. However, some aspects do change. And in this case, I would say that the focus on algorithms is what sets medical imaging apart from other fields.
I'm not an expert, but there is definitely some advanced math and algorithms involved in medical imaging. For example, consider image registration - a common algorithm used in the field. Not only would an MI expert have to have a good mathematical understanding of the registration, but he would also have to be able to readily implement and optimize it - not a trivial task.