Python/Django 中的音频波形可视化
我已经在 Stack Overflow 上查找了这个问题的答案,但似乎没有地方给出正确的答案或方向...
我的项目将允许用户上传 WAV,最终将使用 FFmpeg 将其转换为低质量的 MP3服务器将全部存储在 Amazon S3 上并提供服务。下一个障碍是如何从上传的声音中提取可靠的波形可视化。我在这个项目的 VPS 上的 Linux Ubuntu 10 上使用 Python 和 Django...
我,至少,需要某种指导...我不知道从哪里开始寻找这样的工具?
I've looked around Stack Overflow for an answer to this, but nowhere seems to give the correct answer or direction...
My project will allow a user to upload a WAV, which ultimately will be converted to a low quality MP3 using FFmpeg on the server and it'll all be stored and served on Amazon S3. The next obstacle is working out how to extract a reliable waveform visualisation from this uploaded sound. I'm using Python and Django on Linux Ubuntu 10 on a VPS for this project...
I'm, at the vert least, needing some sort of direction... I'm at a lost of where to start to look for such a tool?
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。
绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论
评论(3)
这个(使用 audiolab、PIL 和 numpy)很不错: http://www.freesound.org /博客/?p=10
This one (uses audiolab, PIL and numpy) is decent: http://www.freesound.org/blog/?p=10
要制作波形图或绘图,通常的 Python 方法是将波形放入 numpy 数组中,然后然后使用 matplotlib 绘制绘图。
将数据读入 numpy 数组的最简单方法是使用 scipy.io.wavfile.read,但如果您不想使用 scipy(这是一个大包),使用Python的wav 模块。
To make a graph or plot of the waveform, the usual Python appoach is to get the waveform into a numpy array, and then use matplotlib to make the plot.
The easiest way to read the data into a numpy array is to use
scipy.io.wavfile.read
, though if you prefer not to use scipy (it's a big package), it's not difficult to read and convert the data using Python's wav module.不想在这里回答我自己的问题,但这是一个建议,可以在看到这个问题时清楚地帮助其他人...
经过大量搜索后,我找到了这个解决方案...看起来做得很好,但还有其他人知道吗它?
看来做了很多事啊!
http://code.google.com/p/timeside/
Not trying to answer my own question here, but it's a suggestion that may help others clearly when seeing this quesion...
After lots of searching around, I found this solution... It seems well done, but does anyone else know anything about it?
Seems to do the lot!
http://code.google.com/p/timeside/