求解三次方程以找到曲线上距某点最近的点

发布于 2024-09-09 04:35:03 字数 2598 浏览 6 评论 0原文

好的,

我有一个射弹,其位置定义如下:

a.x = initialX + initialDX * time;

a.y = initialY + initialDY * time + 0.5 * gravtiy * time^2;

我希望能够预测该射弹将与我的环境中的哪些障碍物发生碰撞。我计划检查曲线上最近的点 A 到点 P 的距离。

我认为在点A处,曲线的切线将垂直于向量AP,并且在A处与曲线的切线只是该点射弹的速度V

APV = 0

ap.x = initialX + initialDX * time - p.x;

ap.y = initialY + initialDY * time + gravity * time^2 - p.y;

v.x = initialDX;

v.y = initialDY + gravity * time;

=>

APV =

( 0.5 * gravity^2 ) * t^3 +

( 1.5 * gravity * initialDY  ) * t^2 +

( initialDX^2 + initialDY^2 + gravity * ( initialY - p.y ) ) * t +

( initialDX * ( initialX - p.x ) + initialDY * ( initialY - p.y ) )

从这里我可以看到这是一个三次函数。我花了一些时间在网上研究,发现有一个通用方程似乎适用于某些值来寻找根。

这是我试图实施的过程。 http://www.sosmath.com/algebra/factor/fac11/fac11。 当我将 x插

a = 0.5 * gravity^2;

b = 1.5 * gravity * initialDY;

c = initialDX^2 + initialDY^2 + gravity * ( initialY - p.y );

d = initialDX * ( initialX - p.x ) + initialDY * ( initialY - p.y );

A = ( c - ( b * b ) / ( 3 * a ) ) / a;

B = -( d + ( 2 * b * b * b ) / ( 27 * a * a ) - ( b * c ) / ( 3 * a ) ) / a;

workingC = -Math.pow( A, 3 ) / 27;

u = ( -B + Math.sqrt( B * B - 4 * workingC ) ) / 2; // Quadratic formula

s = Math.pow( u + B, 1 / 3 );

t = Math.pow( u, 1 / 3 );

y = s - t;

x = y - b / ( 3 * a );

回到时间曲线的原始方程中时,这应该给我 A。这似乎对于某些值来说效果很好,但是当 py 高于某个值时,我没有正数可以在二次方程中取平方根。

我对数学没有足够的了解,无法理解为什么会发生这种情况,或者我可以采取什么措施来解决这个问题。

对此的任何帮助将不胜感激。

更新:

我已经调整了我的算法来处理复杂的根,但是我仍然遇到麻烦。 如果判别式为负,这就是我现在所做的:

a = 0.5 * gravity^2;

b = 1.5 * gravity * initialDY;

c = initialDX^2 + initialDY^2 + gravity * ( initialY - p.y );

d = initialDX * ( initialX - p.x ) + initialDY * ( initialY - p.y );

A = ( c - ( b * b ) / ( 3 * a ) ) / a;

B = -( d + ( 2 * b * b * b ) / ( 27 * a * a ) - ( b * c ) / ( 3 * a ) ) / a;

workingC = -Math.pow( A, 3 ) / 27;

discriminant = B * B - 4 * workingC;

then if discriminant < 0;

uc = new ComplexNumber( -B / 2, Math.sqrt( -discriminant ) / 2 ); 

tc = uc.cubeRoot( ); 

uc.a += B;

sc = uc.cubeRoot( ); 

yc = sc - tc; 

yc.a -= b / ( 3 * a ); 

x = -d / ( yc.a * yc.a + yc.b * yc.b ); 

由于某种原因,这仍然没有给我预期的结果。这里有什么明显错误的地方吗?

Ok,

I have a projectile that has its position defined such that:

a.x = initialX + initialDX * time;

a.y = initialY + initialDY * time + 0.5 * gravtiy * time^2;

I want to be able to predict which obstacles in my environment this projectile will collide with. I plan on checking the distance from A the closest point on the curve to the point P.

I figure that at the point A the tangent to the curve will be perpendicular to the vector AP, and that the tangent to the curve at A will simply be the velocity V of the projectile at that point.

AP dot V = 0

ap.x = initialX + initialDX * time - p.x;

ap.y = initialY + initialDY * time + gravity * time^2 - p.y;

v.x = initialDX;

v.y = initialDY + gravity * time;

=>

AP dot V =

( 0.5 * gravity^2 ) * t^3 +

( 1.5 * gravity * initialDY  ) * t^2 +

( initialDX^2 + initialDY^2 + gravity * ( initialY - p.y ) ) * t +

( initialDX * ( initialX - p.x ) + initialDY * ( initialY - p.y ) )

From here I can see that this is a cubic function. I have spent some time researching online and found that there is a general equation that seems to work for certain values for finding the roots.

This is the process I have attempted to implement.
http://www.sosmath.com/algebra/factor/fac11/fac11.html

a = 0.5 * gravity^2;

b = 1.5 * gravity * initialDY;

c = initialDX^2 + initialDY^2 + gravity * ( initialY - p.y );

d = initialDX * ( initialX - p.x ) + initialDY * ( initialY - p.y );

A = ( c - ( b * b ) / ( 3 * a ) ) / a;

B = -( d + ( 2 * b * b * b ) / ( 27 * a * a ) - ( b * c ) / ( 3 * a ) ) / a;

workingC = -Math.pow( A, 3 ) / 27;

u = ( -B + Math.sqrt( B * B - 4 * workingC ) ) / 2; // Quadratic formula

s = Math.pow( u + B, 1 / 3 );

t = Math.pow( u, 1 / 3 );

y = s - t;

x = y - b / ( 3 * a );

When I plug x back into my original equations for the curve as the time, this should give me A. This seems to work well for certain values, however when p.y is above a certain value, I don't have a positive to take a square root of in the quadratic equation.

I don't have a full enough understanding of the math to understand why this is happening, or what I can do to resolve the issue.

Any help on this would be much appreciated.

UPDATE:

I have adjusted my algorithm to deal with complex roots, however I am still having trouble.
This is what I do now if the discriminant is negative:

a = 0.5 * gravity^2;

b = 1.5 * gravity * initialDY;

c = initialDX^2 + initialDY^2 + gravity * ( initialY - p.y );

d = initialDX * ( initialX - p.x ) + initialDY * ( initialY - p.y );

A = ( c - ( b * b ) / ( 3 * a ) ) / a;

B = -( d + ( 2 * b * b * b ) / ( 27 * a * a ) - ( b * c ) / ( 3 * a ) ) / a;

workingC = -Math.pow( A, 3 ) / 27;

discriminant = B * B - 4 * workingC;

then if discriminant < 0;

uc = new ComplexNumber( -B / 2, Math.sqrt( -discriminant ) / 2 ); 

tc = uc.cubeRoot( ); 

uc.a += B;

sc = uc.cubeRoot( ); 

yc = sc - tc; 

yc.a -= b / ( 3 * a ); 

x = -d / ( yc.a * yc.a + yc.b * yc.b ); 

For some reason, this is still not giving me the results I expect. Is there anything that stands out as being wrong here?

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。

评论(1

不气馁 2024-09-16 04:35:03

实多项式可以有复数根,如果根不是实数,它们会以共轭对的形式出现。

这意味着三次方始终至少有一个实根。

现在,如果您使用您的方法获得复数根,您可以尝试获得共轭,乘除三次常数,取倒数以获得实根。

因此,如果您必须取 -ve 数的平方根,那么它与将其模数的平方根乘以虚数“i”相同。

因此,如果将根表示为 (m,n),表示复数 m + in。那么另一个根是 m - in = (m, -n) 并且 m 和 n 是实数。

三次方可写为 P(x) = (x^2 - 2m + (m^2 + n^2))(xr)。

因此,如果 P(x) = x^3 - a_1 *x^2 + a_2*x - a_3,则我们有 r = a_3/(m^2 + n^2) (a_3 是根的乘积,其中是 r(m^2+n^2))

获得 r 的更简单方法是使用公式 r = a_1 - 2m(a_1 是根之和,即 r+2m)。

查看:http://en.wikipedia.org/wiki/Complex_number

Real polynomials can have complex number roots and if the roots are not real, they occur in conjugate pairs.

This implies cubics always have at least one real root.

Now if you get a complex root using your method, you can try to get the conjugate, mutiply and divide the constant of the cubic, take reciprocal to get the real root.

So if you had to take the square root of a -ve number, then it is same as multiplying the square root of its modulus by the imaginary number 'i'.

So if you represent your root as (m,n) denoting the complex number m + in. Then the other root is m - in = (m, -n) and m and n are real numbers.

The cubic can then be written as P(x) = (x^2 - 2m + (m^2 + n^2))(x-r).

So if P(x) = x^3 - a_1 *x^2 + a_2*x - a_3, then we have that r = a_3/(m^2 + n^2) (a_3 is the product of the roots, which is r(m^2+n^2))

A simpler way to get r would be to use the formula r = a_1 - 2m (a_1 is the sum of the roots, which is r+2m).

Check out: http://en.wikipedia.org/wiki/Complex_number

~没有更多了~
我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
原文