从一组中获取 X 个唯一的数字

发布于 2024-09-09 01:39:16 字数 425 浏览 3 评论 0原文

获取我思考的唯一随机数的最优雅的方法是什么?

目前我需要随机的唯一数字,我通过使用 while 循环来检查它是否不唯一,以查看我之前是否使用过该随机数字。

所以看起来:

int n = getRandomNumber % [Array Size];

for each ( Previously used n in list)
    Check if I've used n before, if I have...try again.

有很多方法可以解决这个线性 O(n/2) 问题,我只是想知道是否有一种优雅的方法来解决它。试着回想一下 MATH115 离散数学,并记住老讲师是否涵盖了与看似微不足道的问题有关的任何内容。

我现在无法思考,所以也许一旦我喝了一些咖啡因,我的大脑就会因为咖啡引起的智商提高而怀疑它。

What is the most elegant way to grab unique random numbers I ponder?

At the moment I need random unique numbers, I check to see if it's not unique by using a while loop to see if I've used the random number before.

So It looks like:

int n = getRandomNumber % [Array Size];

for each ( Previously used n in list)
    Check if I've used n before, if I have...try again.

There are many ways to solve this linear O(n/2) problem, I just wonder if there is a elegant way to solve it. Trying to think back to MATH115 Discrete mathematics and remember if the old lecturer covered anything to do with a seemingly trivial problem.

I can't think at the moment, so maybe once I have some caffeine my brain will suss it with the heightened IQ induced from the Coffee.

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。

评论(4

绾颜 2024-09-16 01:39:16

如果您想要从集合 {1, ..., n} 中无放回地抽取 k 个随机整数(以获得唯一数字),那么您需要的是 [n] 随机排列中的前 k 个元素。生成这种随机排列的最优雅的方法是使用 Knuth shuffle。请参阅此处:http://en.wikipedia.org/wiki/Knuth_shuffle

If you want k random integers drawn without replacement (to get unique numbers) from the set {1, ..., n}, what you want is the first k elements in a random permutation of [n]. The most elegant way to generate such a random permutation is by using the Knuth shuffle. See here: http://en.wikipedia.org/wiki/Knuth_shuffle

孤者何惧 2024-09-16 01:39:16

获取我思考的唯一随机数?

  1. 创建一个由 N 个唯一元素组成的数组(例如,范围为 0..N-1 的整数),将 N 存储为 arraySize 和initialArraySize (arraySize = N;initialArraySize = N)
  2. 当请求随机数时:
    2.1 如果 arraySize 为零,则 arraySize = initialArraySize
    2.1 生成索引 = getRandomNuber()%arraySize
    2.3 结果=数组[索引]。尚未返回结果。
    2.2 将 array[index] 与 array[arraySize-1] 交换。 Swap 的意思是“交换” c = array[index];数组[索引] = 数组[数组大小-1];数组[数组大小-1] = c
    2.3 将 arraySize 减 1。
    2.4 返回结果。

您将获得一个随机数列表,这些随机数在用完唯一值之前不会重复。 O(1) 复杂度。

grab unique random numbers I ponder?

  1. Make an array of N unique elements (integers in range 0..N-1, for example), store N as arraySize and initialArraySize (arraySize = N; initialArraySize = N)
  2. When random number is requested:
    2.1 if arraySize is zero, then arraySize = initialArraySize
    2.1 Generate index = getRandomNuber()%arraySize
    2.3 result = array[index]. Do not return result yet.
    2.2 swap array[index] with array[arraySize-1]. Swap means "exchange" c = array[index]; array[index] = array[arraySize-1]; array[arraySize-1] = c
    2.3 decrease arraySize by 1.
    2.4 return result.

You'll get a list of random numbers that won't repeat until you run out of unique values. O(1) complexity.

静赏你的温柔 2024-09-16 01:39:16

n 位最大周期线性移位反馈寄存器 (LFSR) 将在内部状态重复之前循环遍历其所有 (2^n -1) 个内部状态。当且仅当由抽头序列加 1 形成的多项式是本原多项式 mod 2 时,LFSR 才是最大周期 LFSR。

因此,n 位最大周期 LFSR 将为您提供 (2^n - 1) 的序列唯一的随机数,每个随机数都是 n 位长。

LFSR 非常优雅。

An n-bit Maximal Period Linear Shift Feedback Register (LFSR) will cycle through all of its (2^n -1) internal states before an internal state is repeated. A LFSR is a Maximal Period LFSR if and only if the polynomial formed from a tap sequence plus 1 is a primitive polynomial mod 2.

Thus, an n-bit Maximal Period LFSR will provide you with a sequence of (2^n - 1) unique random numbers, each one of them is n-bit long.

A LFSR is very elegant.

淡莣 2024-09-16 01:39:16

由于您要强加唯一性,因此伪随机生成器应该足够了,可以将其配置为不重复您可能需要的序列长度。例如,LCG:如果种子是 uint32 并且最初为 0,则使用 (1664525 * 种子) + 1013904223 作为下一个种子,并取低位字作为未重复的 16 位结果。

Since you're imposing uniqueness, then a pseudorandom generator should be sufficient, which can be configured to not repeat for as long a sequence as you probably need. Eg, an LCG: if seed is uint32 and initially 0, then use (1664525 * seed) + 1013904223 for the next seed and take the low word for your unrepeated 16-bit result.

~没有更多了~
我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
原文