这里正在做什么? (使用数学识别)

发布于 2024-09-07 17:24:19 字数 1386 浏览 4 评论 0原文

我知道这本身与编程并不完全相关,但程序员是最重要的 也许所有人都会认识到这一点。

我有以下内容(X 和 Y 是数组,都有 3 个元素),但我无法识别(虽然它让我想起了一些事情,但不完全是!)这里正在做什么。它会给其他人敲响警钟吗?

我猜你可以忽略下面的部分;鞋面可能应该放弃它......但我仍然看不到它。

起初它让我想起 3d 空间中的线性插值......

  SUBROUTINE TRII(X,Y,XR,YR)
DIMENSION X(3),Y(3)

D=X(1)*(X(2)**2-X(3)**2)+
 >    X(2)*(X(3)**2-X(1)**2)+
 >    X(3)*(X(1)**2-X(2)**2)

D1=Y(1)*(X(2)*X(3)**2-X(3)*X(2)**2)+
 >     Y(2)*(X(3)*X(1)**2-X(1)*X(3)**2)+
 >     Y(3)*(X(1)*X(2)**2-X(2)*X(1)**2)

D2=Y(1)*(X(2)**2-X(3)**2)+
 >     Y(2)*(X(3)**2-X(1)**2)+
 >     Y(3)*(X(1)**2-X(2)**2)

D3=X(2)*(Y(3)-Y(1))+
 >     X(1)*(Y(2)-Y(3))+
 >     X(3)*(Y(1)-Y(2))

A=D1/D
B=D2/D
C=D3/D

YR=A+B*XR+C*XR**2

RETURN
END

  SUBROUTINE TRIM(X,Y,XR,YR,XM,YM)
DIMENSION X(3),Y(3)

D=X(1)*(X(2)**2-X(3)**2)+
 >    X(2)*(X(3)**2-X(1)**2)+
 >    X(3)*(X(1)**2-X(2)**2)

D1=Y(1)*(X(2)*X(3)**2-X(3)*X(2)**2)+
 >     Y(2)*(X(3)*X(1)**2-X(1)*X(3)**2)+
 >     Y(3)*(X(1)*X(2)**2-X(2)*X(1)**2)

D2=Y(1)*(X(2)**2-X(3)**2)+
 >     Y(2)*(X(3)**2-X(1)**2)+
 >     Y(3)*(X(1)**2-X(2)**2)

D3=X(2)*(Y(3)-Y(1))+
 >     X(1)*(Y(2)-Y(3))+
 >     X(3)*(Y(1)-Y(2))

A=D1/D
B=D2/D
C=D3/D

XR=-B/(2.*C)
YR=A+B*XR+C*XR**2

XM=XR
IF(XR.GT.X(1).OR.XR.LT.X(3))XM=X(1)
YM=A+B*XM+C*XM**2
IF(YM.LT.Y(1))XM=X(1)
IF(YM.LT.Y(1))YM=Y(1)

RETURN
END

“>”是一个延续符号。

I know this isn't exactly programming related per se, but programmers are the most
probable of all people who will recognize this maybe.

I have the following (X and Y are arrays, both with 3 elements), and I cannot recognize (although it reminds me of a few things, but none quite!) what is being done here. Does it ring any bells for anyone else ?

I gather you can disregard the lower part; the upper should probably give it away ... but I still cannot see it.

At first it reminded me of linear interpolation in 3d space ...

  SUBROUTINE TRII(X,Y,XR,YR)
DIMENSION X(3),Y(3)

D=X(1)*(X(2)**2-X(3)**2)+
 >    X(2)*(X(3)**2-X(1)**2)+
 >    X(3)*(X(1)**2-X(2)**2)

D1=Y(1)*(X(2)*X(3)**2-X(3)*X(2)**2)+
 >     Y(2)*(X(3)*X(1)**2-X(1)*X(3)**2)+
 >     Y(3)*(X(1)*X(2)**2-X(2)*X(1)**2)

D2=Y(1)*(X(2)**2-X(3)**2)+
 >     Y(2)*(X(3)**2-X(1)**2)+
 >     Y(3)*(X(1)**2-X(2)**2)

D3=X(2)*(Y(3)-Y(1))+
 >     X(1)*(Y(2)-Y(3))+
 >     X(3)*(Y(1)-Y(2))

A=D1/D
B=D2/D
C=D3/D

YR=A+B*XR+C*XR**2

RETURN
END

  SUBROUTINE TRIM(X,Y,XR,YR,XM,YM)
DIMENSION X(3),Y(3)

D=X(1)*(X(2)**2-X(3)**2)+
 >    X(2)*(X(3)**2-X(1)**2)+
 >    X(3)*(X(1)**2-X(2)**2)

D1=Y(1)*(X(2)*X(3)**2-X(3)*X(2)**2)+
 >     Y(2)*(X(3)*X(1)**2-X(1)*X(3)**2)+
 >     Y(3)*(X(1)*X(2)**2-X(2)*X(1)**2)

D2=Y(1)*(X(2)**2-X(3)**2)+
 >     Y(2)*(X(3)**2-X(1)**2)+
 >     Y(3)*(X(1)**2-X(2)**2)

D3=X(2)*(Y(3)-Y(1))+
 >     X(1)*(Y(2)-Y(3))+
 >     X(3)*(Y(1)-Y(2))

A=D1/D
B=D2/D
C=D3/D

XR=-B/(2.*C)
YR=A+B*XR+C*XR**2

XM=XR
IF(XR.GT.X(1).OR.XR.LT.X(3))XM=X(1)
YM=A+B*XM+C*XM**2
IF(YM.LT.Y(1))XM=X(1)
IF(YM.LT.Y(1))YM=Y(1)

RETURN
END

">" is a continuation sign.

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。

评论(5

枯寂 2024-09-14 17:24:40

这是一种求解线性方程组的方法,特别是cramers 规则。另请参阅萨鲁斯规则。之后,您似乎从中构造了一个二次方程。

This is a way to solve linear equation systems, specifically cramers rule. Also have a look at the rule of sarrus. After that, you seem to construct a quadratic equation out of it.

简美 2024-09-14 17:24:37

我不确定这是什么语言,但很明显这是某种二次方程的求解器。 XRYR 表达式是一个致命的泄露:

XR = -B / (2.*C)
YR = A + B*XR + C*XR**2

不知道 X(1..3)Y(1.然而,.3) 表达式是,但是,不可能对 A/B/C 系数代表的内容推断太多。很多东西都使用二次方程——给定半径的圆面积、给定距离的光强度等等。需要更多上下文数据。


更新:OP表示,出于保密原因,他不能透露太多具体信息。不过,这里有一些提示:

  • 子例程返回什么?稍后如何使用这些结果?这可能会带来更好的见解。

  • 看起来 Y(1) 是该计算结果的某种神奇下界。请注意,如果 YM 小于 Y(1),则 XMYM 均设置为X(1) 和 Y(1)

  • “D”表达式看起来像这样,采用更自然的语法:

d = x1 * [x2^2 - x3^2] + x2 * [x3^2 - x1^2] + x3 * [x1^1 - x2^2]
  d1 = y1 * [x2*x3^2 - x3*x2^2] + y2 * [x3*x1^2 - x1*x3^2] + y3 * [x1*x2^2 - x1*x2^2]
  d2 = y1 * [x2^2 - x3^2] + y2 * [x3^2 - x1^2] + y3 * [x1^2 - x2^2]
  d3 = x2 * [y3 - y1] + x1 * [y2 - y3] * x3 * [y1 - y2]
  • 这看起来非常像某种矩阵运算; D 几乎可以肯定是“行列式”。但还有其他事物具有相同的数学关系。

I'm not sure what language this is, but it's clear that this is some sort of solver for quadratic equations. The XR and YR expressions are a dead giveaway:

XR = -B / (2.*C)
YR = A + B*XR + C*XR**2

Without knowing what the X(1..3) and Y(1..3) expressions are, however, it's not going to be possible to infer too much more about what the A/B/C coefficients represent, however. Lots of things use quadratic equations -- area of a circle given the radius, intensity of light at a given distance, et cetera. More contextual data is required.


Update: The OP indicated that he can't be too much more specific for secrecy reasons. Here are some hints, though:

  • What does the subroutine return? How are those results used later on? That may lead to better insights.

  • It appears that Y(1) is some sort of magic lower bound for the result of this computation. Notice that if YM is less than Y(1), then both XM and YM are set to X(1) and Y(1), respectively.

  • The "D" expressions look like this, in more natural syntax:

d = x1 * [x2^2 - x3^2] + x2 * [x3^2 - x1^2] + x3 * [x1^1 - x2^2]
  d1 = y1 * [x2*x3^2 - x3*x2^2] + y2 * [x3*x1^2 - x1*x3^2] + y3 * [x1*x2^2 - x1*x2^2]
  d2 = y1 * [x2^2 - x3^2] + y2 * [x3^2 - x1^2] + y3 * [x1^2 - x2^2]
  d3 = x2 * [y3 - y1] + x1 * [y2 - y3] * x3 * [y1 - y2]
  • This looks very much like some sort of matrix operation; D is almost certainly for "determinant". But there are other things that have the same mathematical relationship.
写给空气的情书 2024-09-14 17:24:32

此代码表示一种对三个 2d 点的插值/二次曲线拟合,以及计算间隔本身内此类拟合二次曲线的最小值或最大值的方法。我猜想 TRII 代表三重(点)插值,TRIM 代表三重(点)最小值或最大值。

更精确地说,TRII 解决了这个问题:- 找到一条通过点 (x1,y1)、(x2,y2) 和 (x3,y3) 的二次曲线,形式为 Y=A+BX+C X^2 并计算点 XR 处二次方程的 Y 值并返回为 YR。这基本上是在三个 2d 点之间平滑插值的一种方法。它通常用于寻找一组离散数据点的最大值或最小值的更好近似值。

所有 D、D1、D2、D3 的内容都是为了求解矩阵方程:

(1 X1 X1^2) *(A) = (Y1)

(1 X2 X2^2) *(B) = (Y2)

(1 X3 X3^2) *(C) = (Y3)

使用其他评论之一中提到的 Cramers 规则,D 是矩阵行列式,D1、D2、D3 是辅因子。

TRIM 再次计算二次方程 Y=A+BX+CX^2,然后找到该二次方程的最大值/最小值 (XM, YM)。这是通过首先找到二次方程有转折点的点来完成的:如果 F(X)=A+BX+CX^2,F'(XR)=B+2*C *XR=0,或XR=-B/2*C,YR=A+BXR+CXR^2。然后有一些逻辑强制返回的 XM、YM 最小值或最大值位于特定范围内。

代码:

XM=XR



IF(YM.LT.Y(1))YM=Y(1)

有点奇怪,因为如果我们假设 GT 和 LT 分别表示大于和小于,那么我们需要假设 X3'<'X1,否则条件 (XR.GT.X(1).OR.XR.LT.X(3)) 很简单,XM、YM 设置为 X1、Y1。

因此 X3'<'X1 并且条件表示如果二次最大/最小值超出区间 (X1,X3),则像以前一样将 (XM,YM) 设置为 (X1,Y1)。如果不是,则如果 Y1 高于 Y 中的最小/最大值,则再次将 (XM,YM) 设置为 (X1, Y1)。

很难理解这意味着什么,我怀疑代码可能是错误的!有什么想法吗?

伊万

This code represents a kind of interpolation/quadratic curve fitting on three 2d points together with a way to compute the minimum or maximum value of such a fitted quadratic within the interval itself. I guess that TRII stands for triple (point)-interpolation and TRIM stands for triple (point) minimum or maximum.

To be more precised TRII solves the problem :- find a quadratic curve that passes through the points (x1,y1),(x2,y2) and (x3,y3) in the form Y=A+BX+CX^2 and compute the Y value of the quadratic at the point XR and return as YR. This is basically a way to interpolate smoothly between three 2d points. It is often used to find a better approximation for the max or min value of a set of discrete data points.

All the D, D1, D2, D3 stuff is to solve the matrix equation:

(1 X1 X1^2) *(A) = (Y1)

(1 X2 X2^2) *(B) = (Y2)

(1 X3 X3^2) *(C) = (Y3)

using Cramers rule as mentioned in one of the other comments, D is the matrix determinant and D1, D2, D3 are co-factors.

TRIM again computes the quadratic Y=A+BX+CX^2 and then finds a max/min of this quadratic (XM, YM). This is done by initially finding the point where the quadratic has a turning point: if F(X)=A+BX+CX^2, F'(XR)=B+2*C*XR=0, or XR=-B/2*C, YR=A+BXR+CXR^2. There is then some logic to force the returned XM, YM min or max values to lie within certain bounds.

The code:

XM=XR
.
.
.
IF(YM.LT.Y(1))YM=Y(1)

Is a little weird since if we assume that GT and LT mean greater than and less than respectively then we need to assume that X3'<'X1 otherwise the condition (XR.GT.X(1).OR.XR.LT.X(3)) is trivial and XM,YM are set to X1, Y1.

So X3'<'X1 and the condition says that if the quadratics max/min value is outside the interval (X1,X3) then set (XM,YM) to (X1, Y1) as before. If not then if Y1 is above the min/max value in Y then again set (XM,YM) to (X1, Y1).

It is hard to understand what this means and I suspect the code may be wrong! Any thoughts?

Ivan

追风人 2024-09-14 17:24:30

D 是矩阵的行列式:

        | x(1) x(1)² 1 |
D = det | x(2) x(2)² 1 |
        | x(3) x(3)² 1 |

在 D1 中,最右边的列已替换为 Y:

         | x(1) x(1)² Y(1) |
D1 = det | x(2) x(2)² Y(2) |
         | x(3) x(3)² Y(3) |

在 D2 和 D3 中,它分别是第一列和第二列。现在是不是更容易认出来了?对我来说,看起来很像使用克莱默法则来求解线性方程。

编辑:更准确地说:(A,B,C)是系统的解:

A + x(1)*B + x(1)²*C = Y(1)
A + x(2)*B + x(2)²*C = Y(2)
A + x(3)*B + x(3)²*C = Y(3)

YR是二次方程解的平方(nb,不同的x!):

C*x² + B*x + A = 0

我觉得现在这应该很明显了,但我不太明白......

D is the determinant of the matrix:

        | x(1) x(1)² 1 |
D = det | x(2) x(2)² 1 |
        | x(3) x(3)² 1 |

In D1, the rightmost column has been replaced with Y:

         | x(1) x(1)² Y(1) |
D1 = det | x(2) x(2)² Y(2) |
         | x(3) x(3)² Y(3) |

In D2, and D3 it's the first and second columns, respectively. Is it easier to recognize now? Looks a lot like using Cramer's rule to solve a linear equation to me.

Edit: To be more precise: (A, B, C) is the solution to the system:

A + x(1)*B + x(1)²*C = Y(1)
A + x(2)*B + x(2)²*C = Y(2)
A + x(3)*B + x(3)²*C = Y(3)

YR is the square of the solution to the quadratic equation (nb, different x!):

C*x² + B*x + A = 0

I feel like this should be obvious now, but I can't quite grasp it...

不打扰别人 2024-09-14 17:24:27

代码运行如下

例程 TRII 将三个点 (x,y) 的坐标作为输入,并使用 拉格朗日插值。还采用坐标 XR 作为输入。在 YR 中返回插值抛物线 XR 处的值。
我猜例程的名称来自“TRI”(克罗地亚语“三”(点))和“I”插值。

例程 TRIM 也计算相同的抛物线,并返回区间{X(1),X(3)}中的函数。名称来自“TRI”和“M”(最小值)

(我“真的”执行了程序)>)

请注意,这是 FORTRAN 代码,参数是通过引用传递的,因此结果以相同的参数返回(非常奇怪!)

编辑

只是为了好玩,让我们运行 TRII

TRII[X_, Y_, XR_] := 
  Module[{D0, D1, D2, D3, A, B, C}, 
     D0 = X[[1]]*(X[[2]]^2 - X[[3]]^2) + 
          X[[2]]*(X[[3]]^2 - X[[1]]^2) + 
          X[[3]]*(X[[1]]^2 - X[[2]]^2);
     D1 = Y[[1]]*(X[[2]]*X[[3]]^2 - X[[3]]*X[[2]]^2) + 
          Y[[2]]*(X[[3]]*X[[1]]^2 - X[[1]]*X[[3]]^2) + 
          Y[[3]]*(X[[1]]*X[[2]]^2 - X[[2]]*X[[1]]^2);
     D2 = Y[[1]]*(X[[2]]^2 - X[[3]]^2) + 
          Y[[2]]*(X[[3]]^2 - X[[1]]^2) + 
          Y[[3]]*(X[[1]]^2 - X[[2]]^2);
     D3 = X[[2]]*(Y[[3]] - Y[[1]]) + 
          X[[1]]*(Y[[2]] - Y[[3]]) + 
          X[[3]]*(Y[[1]] - Y[[2]]);
   A = D1/D0;
   B = D2/D0;
   C = D3/D0;
   Return[A + B*XR + C*XR^2];];

X = RandomReal[1, 3];
Y = RandomReal[1, 3];
Show[Plot[TRII[X, Y, x], {x, 0, 1}], 
 ListPlot[Transpose[{X, Y}], PlotMarkers -> Automatic]]

在此处输入图像描述

The code run as follows

Routine TRII takes as input the coordinates of three points (x,y) and interpolates a parabola using Lagrange interpolation. Also takes as input the coordinate XR. Returns in YR the value at XR for the interpolating parabola.
I guess the name of the routine comes from "TRI" (Croatian for "three" (points)) and "I" for Interpolation.

Routine TRIM also calculates the same parabola, and returns the minimun value of the function in the interval {X(1),X(3)}.The name comes from "TRI" and "M" (minimum)

(I "really" executed the program) >)

Note that this is FORTRAN code and the parameters are passed by reference, so the results are returned back in the same parameters (very odd!)

Edit

Just for fun, let's run TRII

TRII[X_, Y_, XR_] := 
  Module[{D0, D1, D2, D3, A, B, C}, 
     D0 = X[[1]]*(X[[2]]^2 - X[[3]]^2) + 
          X[[2]]*(X[[3]]^2 - X[[1]]^2) + 
          X[[3]]*(X[[1]]^2 - X[[2]]^2);
     D1 = Y[[1]]*(X[[2]]*X[[3]]^2 - X[[3]]*X[[2]]^2) + 
          Y[[2]]*(X[[3]]*X[[1]]^2 - X[[1]]*X[[3]]^2) + 
          Y[[3]]*(X[[1]]*X[[2]]^2 - X[[2]]*X[[1]]^2);
     D2 = Y[[1]]*(X[[2]]^2 - X[[3]]^2) + 
          Y[[2]]*(X[[3]]^2 - X[[1]]^2) + 
          Y[[3]]*(X[[1]]^2 - X[[2]]^2);
     D3 = X[[2]]*(Y[[3]] - Y[[1]]) + 
          X[[1]]*(Y[[2]] - Y[[3]]) + 
          X[[3]]*(Y[[1]] - Y[[2]]);
   A = D1/D0;
   B = D2/D0;
   C = D3/D0;
   Return[A + B*XR + C*XR^2];];

X = RandomReal[1, 3];
Y = RandomReal[1, 3];
Show[Plot[TRII[X, Y, x], {x, 0, 1}], 
 ListPlot[Transpose[{X, Y}], PlotMarkers -> Automatic]]

enter image description here

~没有更多了~
我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
原文