使用accumulate 计算总和

发布于 2024-09-07 15:05:16 字数 801 浏览 9 评论 0原文

程序accumulate的定义如下:

(define (accumulate combiner null-value term a next b)
  (if (> a b) null-value
      (combiner (term a)
                (accumulate combiner null-value term (next a) next b))))

问题1:x^n ;解决方案:递归无累加

(define (expon x n)
  (if (> n 0) (* x
                 (expon x (- n 1))
              )
              1))

问题2:x + x^2 + x^4 + x^6 + ...+ ,计算给定的n 序列的前n 个元素。

问题3:1+x/1! + x^2/2! + ... + x^n/n!;计算给定 x,n 的总和 可能不正确的解决方案:

(define (exp1 x n)
 (define (term i)
   (define (term1 k) (/ x k))
   (accumulate * 1 term1 1 1+ i))
  (accumulate + 0 term 1 1+ n))

为什么前面的代码不正确:

(exp1 0 3) ->; 0 ;应该是1 (exp1 1 1)-> 1 ;应该是2

procedure accumulate is defined like this:

(define (accumulate combiner null-value term a next b)
  (if (> a b) null-value
      (combiner (term a)
                (accumulate combiner null-value term (next a) next b))))

problem 1: x^n
;Solution: recursive without accumulate

(define (expon x n)
  (if (> n 0) (* x
                 (expon x (- n 1))
              )
              1))

problem 2: x + x^2 + x^4 + x^6 + ...+ ,calculate for given n the first n elements of the sequence.

problem 3: 1 + x/1! + x^2/2! + ... + x^n/n!; calculate the sum for given x,n
possibly incorrect solution:

(define (exp1 x n)
 (define (term i)
   (define (term1 k) (/ x k))
   (accumulate * 1 term1 1 1+ i))
  (accumulate + 0 term 1 1+ n))

why the previous code is incorrect:

(exp1 0 3) -> 0 ; It should be 1
(exp1 1 1) -> 1 ; It should be 2

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。

评论(1

白云不回头 2024-09-14 15:05:16

首先,我想说你的 EXP1 过程在根据累加定义时的运行水平太低,并且为了洞察力,用总和和阶乘重写它:

(define (sum term a b)
  (accumulate + 0 term a 1+ b))

(define (product term a b)
  (accumulate * 1 term a 1+ b))

(define (identity x) x)

(define (fact n)
  (if (= n 0)
      1
      (product identity 1 n)))

(define (exp1 x n)
  (define (term i)
    (/ (expon x i) (fact i)))
  (sum term 1 n))

现在回答你的问题:你的原因是得到 (EXP1 0 3) → 0 只不过是您忘记在系列开头添加 1,而只是计算 x/1! + x^2/2! + ... + x^n/n!

更改 EXP1 以包含缺失的术语可以按预期工作:

(define (exp1 x n)
    (define (term i)
          (/ (expon x i) (fact i)))
    (+ 1 (sum term 1 n)))

=> (exp1 0 3)
1
=> (exp1 1 1)
2

First off, I would say that your EXP1 procedure is operating at too low a level in being defined in terms of ACCUMULATE, and for the sake of perspicacity rewrite it instead in terms of sums and factorials:

(define (sum term a b)
  (accumulate + 0 term a 1+ b))

(define (product term a b)
  (accumulate * 1 term a 1+ b))

(define (identity x) x)

(define (fact n)
  (if (= n 0)
      1
      (product identity 1 n)))

(define (exp1 x n)
  (define (term i)
    (/ (expon x i) (fact i)))
  (sum term 1 n))

Now to your question: the reason you are getting (EXP1 0 3) → 0 is no more than that you forgot to add the 1 at the start of the series, and are just computing x/1! + x^2/2! + ... + x^n/n!

Changing EXP1 to include the missing term works as expected:

(define (exp1 x n)
    (define (term i)
          (/ (expon x i) (fact i)))
    (+ 1 (sum term 1 n)))

=> (exp1 0 3)
1
=> (exp1 1 1)
2
~没有更多了~
我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
原文