python/matplotlib - 寄生双轴缩放

发布于 2024-09-07 10:58:42 字数 652 浏览 8 评论 0原文

尝试绘制频谱,即速度与强度的关系,下部 x 轴 = 速度,上部双轴 = 频率

它们之间的关系(多普勒公式)为,其中

f = (1-v/c)*f_0 

f 是结果频率,v 是速度,c 是光,f_0 是 v=0 时的频率,即。 v_lsr。

我试图通过查看 http://matplotlib.sourceforge.net/examples 来解决它/axes_grid/parasite_simple2.html ,我的问题解决的

pm_to_kms = 1./206265.*2300*3.085e18/3.15e7/1.e5
aux_trans = matplotlib.transforms.Affine2D().scale(pm_to_kms, 1.)
ax_pm = ax_kms.twin(aux_trans)
ax_pm.set_viewlim_mode("transform")

是,如何用我的频率函数替换 pm_to_kms ?

有人知道如何解决这个问题吗?

Trying to plot a spectrum, ie, velocity versus intensity, with lower x axis = velocity, on the upper twin axis = frequency

The relationship between them (doppler formula) is

f = (1-v/c)*f_0 

where f is the resulting frequency, v the velocity, c the speed of light, and f_0 the frequency at v=0, ie. the v_lsr.

I have tried to solve it by looking at http://matplotlib.sourceforge.net/examples/axes_grid/parasite_simple2.html , where it is solved by

pm_to_kms = 1./206265.*2300*3.085e18/3.15e7/1.e5
aux_trans = matplotlib.transforms.Affine2D().scale(pm_to_kms, 1.)
ax_pm = ax_kms.twin(aux_trans)
ax_pm.set_viewlim_mode("transform")

my problem is, how do I replace the pm_to_kms with my function for frequency?

Anyone know how to solve this?

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。

评论(2

浅笑依然 2024-09-14 10:58:42

我最终使用的解决方案是:

ax_hz = ax_kms.twiny()
x_1, x_2 = ax_kms.get_xlim()
# i want the frequency in GHz so, divide by 1e9
ax_hz.set_xlim(calc_frequency(x_1,data.restfreq/1e9),calc_frequency(x_2,data.restfreq/1e9))

这是完美的,而且更简单的解决方案。

编辑:找到了一个非常奇特的答案。
编辑2:根据@u55的评论更改了转换调用

这基本上涉及定义我们自己的转换/转换。由于具有出色的 AstroPy 单位等效性,它变得更容易理解且更具说明性。

from matplotlib import transforms as mtransforms
import astropy.constants as co
import astropy.units as un
import numpy as np 
import matplotlib.pyplot as plt 
plt.style.use('ggplot')
from mpl_toolkits.axes_grid.parasite_axes import SubplotHost 


class Freq2WavelengthTransform(mtransforms.Transform): 
    input_dims = 1 
    output_dims = 1 
    is_separable = False 
    has_inverse = True 

    def __init__(self):
        mtransforms.Transform.__init__(self)

    def transform_non_affine(self, fr): 
        return (fr*un.GHz).to(un.mm, equivalencies=un.spectral()).value 

    def inverted(self): 
        return Wavelength2FreqTransform() 

class Wavelength2FreqTransform(Freq2WavelengthTransform): 
    input_dims = 1 
    output_dims = 1 
    is_separable = False 
    has_inverse = True 

    def __init__(self):
        mtransforms.Transform.__init__(self)

    def transform_non_affine(self, wl): 
        return (wl*un.mm).to(un.GHz, equivalencies=un.spectral()).value 

    def inverted(self): 
        return Freq2WavelengthTransform() 



aux_trans = mtransforms.BlendedGenericTransform(Wavelength2FreqTransform(), mtransforms.IdentityTransform()) 

fig = plt.figure(2) 

ax_GHz = SubplotHost(fig, 1,1,1) 
fig.add_subplot(ax_GHz) 
ax_GHz.set_xlabel("Frequency (GHz)") 


xvals = np.arange(199.9, 999.9, 0.1) 

# data, noise + Gaussian (spectral) lines
data = np.random.randn(len(xvals))*0.01 + np.exp(-(xvals-300.)**2/100.)*0.5 + np.exp(-(xvals-600.)**2/400.)*0.5

ax_mm = ax_GHz.twin(aux_trans) 
ax_mm.set_xlabel('Wavelength (mm)') 
ax_mm.set_viewlim_mode("transform") 
ax_mm.axis["right"].toggle(ticklabels=False) 

ax_GHz.plot(xvals, data) 
ax_GHz.set_xlim(200, 1000) 

plt.draw() 
plt.show() 

现在会产生所需的结果:
在此处输入图像描述

The solution I ended up using was:

ax_hz = ax_kms.twiny()
x_1, x_2 = ax_kms.get_xlim()
# i want the frequency in GHz so, divide by 1e9
ax_hz.set_xlim(calc_frequency(x_1,data.restfreq/1e9),calc_frequency(x_2,data.restfreq/1e9))

This works perfect, and much less complicated solution.

EDIT : Found a very fancy answer.
EDIT2 : Changed the transform call according to the comment by @u55

This basically involves defining our own conversion/transform. Because of the excellent AstroPy Units equivalencies, it becomes even easier to understand and more illustrative.

from matplotlib import transforms as mtransforms
import astropy.constants as co
import astropy.units as un
import numpy as np 
import matplotlib.pyplot as plt 
plt.style.use('ggplot')
from mpl_toolkits.axes_grid.parasite_axes import SubplotHost 


class Freq2WavelengthTransform(mtransforms.Transform): 
    input_dims = 1 
    output_dims = 1 
    is_separable = False 
    has_inverse = True 

    def __init__(self):
        mtransforms.Transform.__init__(self)

    def transform_non_affine(self, fr): 
        return (fr*un.GHz).to(un.mm, equivalencies=un.spectral()).value 

    def inverted(self): 
        return Wavelength2FreqTransform() 

class Wavelength2FreqTransform(Freq2WavelengthTransform): 
    input_dims = 1 
    output_dims = 1 
    is_separable = False 
    has_inverse = True 

    def __init__(self):
        mtransforms.Transform.__init__(self)

    def transform_non_affine(self, wl): 
        return (wl*un.mm).to(un.GHz, equivalencies=un.spectral()).value 

    def inverted(self): 
        return Freq2WavelengthTransform() 



aux_trans = mtransforms.BlendedGenericTransform(Wavelength2FreqTransform(), mtransforms.IdentityTransform()) 

fig = plt.figure(2) 

ax_GHz = SubplotHost(fig, 1,1,1) 
fig.add_subplot(ax_GHz) 
ax_GHz.set_xlabel("Frequency (GHz)") 


xvals = np.arange(199.9, 999.9, 0.1) 

# data, noise + Gaussian (spectral) lines
data = np.random.randn(len(xvals))*0.01 + np.exp(-(xvals-300.)**2/100.)*0.5 + np.exp(-(xvals-600.)**2/400.)*0.5

ax_mm = ax_GHz.twin(aux_trans) 
ax_mm.set_xlabel('Wavelength (mm)') 
ax_mm.set_viewlim_mode("transform") 
ax_mm.axis["right"].toggle(ticklabels=False) 

ax_GHz.plot(xvals, data) 
ax_GHz.set_xlim(200, 1000) 

plt.draw() 
plt.show() 

This now produces the desired results:
enter image description here

jJeQQOZ5 2024-09-14 10:58:42

您的“线性函数”是“简单的缩放定律”(带有偏移量)。只需将 pm_to_kms 定义替换为您的函数即可。

Your "linear function" is a "simple scaling law" (with an offset). Just replace the pm_to_kms definition with your function.

~没有更多了~
我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
原文