生成具有概率分布的随机数

发布于 2024-09-07 08:54:22 字数 665 浏览 3 评论 0原文

好的,这就是我的问题。我们正在考虑从一家公司购买数据集来扩充我们现有的数据集。出于本问题的目的,假设该数据集使用有机数字对地点进行排名(这意味着分配给一个地点的数字与分配给另一个地点的数字无关)。技术范围是 0 到无穷大,但从我见过的样本集来看,它是 0 到 70。根据样本,它绝对不是均匀分布(在 10,000 中可能有 5 个地方得分超过 40, 10分以上为50分,1分以上为1000分)。在我们决定购买这套设备之前,我们想模拟一下它,以便我们可以看到它有多么有用。

所以,为了模拟它,我一直在考虑为每个地方生成一个随机数(大约150,000个随机数)。但是,我也想遵循数据的精神,并保持分布相对相同(或至少相当接近)。我整天绞尽脑汁想办法,却一无所获。

我的一个想法是对随机数进行平方(0 到 sqrt(70) 之间)。但这对小于 1 和更大的数字都有利。

我认为他的真实分布在第一象限应该是双曲...我只是空白如何将随机数的线性均匀分布转换为双曲分布(如果双曲甚至是我在第一象限中想要的)地方)。

有什么想法吗?

所以,总而言之,这是我想要的分布(大约):

  • 40 - 70:0.02% - 0.05%
  • 10 - 40:0.5% - 1%
  • 1 - 10:10% - 20%
  • 0 - 1:余数(78.95% - 89.48%)

Ok, so here's my problem. We are looking at purchasing a data set from a company to augment our existing data set. For the purposes of this question, let's say that this data set ranks places with an organic number (meaning that the number assigned to one place has no bearing on the number assigned to another). The technical range is 0 to infinity, but from sample sets that I've seen, it's 0 to 70. Based on the sample, it's most definitely not a uniform distribution (out of 10,000 there are maybe 5 places with a score over 40, 50 with a score over 10, and 1000 with a score over 1). Before we decide to purchase this set, we would like to simulate it so that we can see how useful it may be.

So, to simulate it, I've been thinking about generating a random number for each place (about 150,000 random numbers). But, I also want to keep to the spirit of the data, and keep the distribution relatively the same (or at least reasonably close). I've been racking my brain all day trying to think of a way to do it, and have come up empty.

One thought I had was to square the random number (between 0 and sqrt(70)). But that would favor both less than 1 and larger numbers.

I'm thinking that he real distribution should be hyperbolic in the first quadrant... I'm just blanking on how to turn a linear, even distribution of random numbers into a hyperbolic distribution (If hyperbolic is even what I want in the first place).

Any thoughts?

So, to sum, here's the distribution I would like (approximately):

  • 40 - 70: 0.02% - 0.05%
  • 10 - 40: 0.5% - 1%
  • 1 - 10: 10% - 20%
  • 0 - 1 : Remainder (78.95% - 89.48%)

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。

评论(4

稚气少女 2024-09-14 08:54:22

看看可靠性分析中使用的分布 - 它们往往具有长尾。一种相对简单的可能性是具有 P(X>x)=exp[-(x/b)^a] 的威布尔分布。

将您的值拟合为 P(X>1)=0.1 和 P(X>10)=0.005,得到 a=0.36 和 b=0.1。这意味着 P(X>40)*10000=1.6,这有点太低了,但是 P(X>70)*10000=0.2 这是合理的。

编辑
哦,要从统一的 (0,1) 值 U 生成威布尔分布随机变量,只需计算 b*[-log(1-u)]^(1/a) 即可。这是 1-P(X>x) 的反函数,以防我计算错误。

Look at distributions used in reliability analysis - they tend to have these long tails. A relatively simply possibility is the Weibull distribution with P(X>x)=exp[-(x/b)^a].

Fitting your values as P(X>1)=0.1 and P(X>10)=0.005, I get a=0.36 and b=0.1. This would imply that P(X>40)*10000=1.6, which is a bit too low, but P(X>70)*10000=0.2 which is reasonable.

EDIT
Oh, and to generate a Weibull-distributed random variable from a uniform(0,1) value U, just calculate b*[-log(1-u)]^(1/a). This is the inverse function of 1-P(X>x) in case I miscalculated something.

如果没有你 2024-09-14 08:54:22

几年前为 PHP4 编写的,只需选择您的发行版:

<?php

define( 'RandomGaussian',           'gaussian' ) ;          //  gaussianWeightedRandom()
define( 'RandomBell',               'bell' ) ;              //  bellWeightedRandom()
define( 'RandomGaussianRising',     'gaussianRising' ) ;    //  gaussianWeightedRisingRandom()
define( 'RandomGaussianFalling',    'gaussianFalling' ) ;   //  gaussianWeightedFallingRandom()
define( 'RandomGamma',              'gamma' ) ;             //  gammaWeightedRandom()
define( 'RandomGammaQaD',           'gammaQaD' ) ;          //  QaDgammaWeightedRandom()
define( 'RandomLogarithmic10',      'log10' ) ;             //  logarithmic10WeightedRandom()
define( 'RandomLogarithmic',        'log' ) ;               //  logarithmicWeightedRandom()
define( 'RandomPoisson',            'poisson' ) ;           //  poissonWeightedRandom()
define( 'RandomDome',               'dome' ) ;              //  domeWeightedRandom()
define( 'RandomSaw',                'saw' ) ;               //  sawWeightedRandom()
define( 'RandomPyramid',            'pyramid' ) ;           //  pyramidWeightedRandom()
define( 'RandomLinear',             'linear' ) ;            //  linearWeightedRandom()
define( 'RandomUnweighted',         'non' ) ;               //  nonWeightedRandom()



function mkseed()
{
    srand(hexdec(substr(md5(microtime()), -8)) & 0x7fffffff) ;
}   //  function mkseed()




/*
function factorial($in) {
    if ($in == 1) {
        return $in ;
    }
    return ($in * factorial($in - 1.0)) ;
}   //  function factorial()


function factorial($in) {
    $out = 1 ;
    for ($i = 2; $i <= $in; $i++) {
        $out *= $i ;
    }

    return $out ;
}   //  function factorial()
*/




function random_0_1()
{
    //  returns random number using mt_rand() with a flat distribution from 0 to 1 inclusive
    //
    return (float) mt_rand() / (float) mt_getrandmax() ;
}   //  random_0_1()


function random_PN()
{
    //  returns random number using mt_rand() with a flat distribution from -1 to 1 inclusive
    //
    return (2.0 * random_0_1()) - 1.0 ;
}   //  function random_PN()




function gauss()
{
    static $useExists = false ;
    static $useValue ;

    if ($useExists) {
        //  Use value from a previous call to this function
        //
        $useExists = false ;
        return $useValue ;
    } else {
        //  Polar form of the Box-Muller transformation
        //
        $w = 2.0 ;
        while (($w >= 1.0) || ($w == 0.0)) {
            $x = random_PN() ;
            $y = random_PN() ;
            $w = ($x * $x) + ($y * $y) ;
        }
        $w = sqrt((-2.0 * log($w)) / $w) ;

        //  Set value for next call to this function
        //
        $useValue = $y * $w ;
        $useExists = true ;

        return $x * $w ;
    }
}   //  function gauss()


function gauss_ms( $mean,
                   $stddev )
{
    //  Adjust our gaussian random to fit the mean and standard deviation
    //  The division by 4 is an arbitrary value to help fit the distribution
    //      within our required range, and gives a best fit for $stddev = 1.0
    //
    return gauss() * ($stddev/4) + $mean;
}   //  function gauss_ms()


function gaussianWeightedRandom( $LowValue,
                                 $maxRand,
                                 $mean=0.0,
                                 $stddev=2.0 )
{
    //  Adjust a gaussian random value to fit within our specified range
    //      by 'trimming' the extreme values as the distribution curve
    //      approaches +/- infinity
    $rand_val = $LowValue + $maxRand ;
    while (($rand_val < $LowValue) || ($rand_val >= ($LowValue + $maxRand))) {
        $rand_val = floor(gauss_ms($mean,$stddev) * $maxRand) + $LowValue ;
        $rand_val = ($rand_val + $maxRand) / 2 ;
    }

    return $rand_val ;
}   //  function gaussianWeightedRandom()


function bellWeightedRandom( $LowValue,
                             $maxRand )
{
    return gaussianWeightedRandom( $LowValue, $maxRand, 0.0, 1.0 ) ;
}   //  function bellWeightedRandom()


function gaussianWeightedRisingRandom( $LowValue,
                                       $maxRand )
{
    //  Adjust a gaussian random value to fit within our specified range
    //      by 'trimming' the extreme values as the distribution curve
    //      approaches +/- infinity
    //  The division by 4 is an arbitrary value to help fit the distribution
    //      within our required range
    $rand_val = $LowValue + $maxRand ;
    while (($rand_val < $LowValue) || ($rand_val >= ($LowValue + $maxRand))) {
        $rand_val = $maxRand - round((abs(gauss()) / 4) * $maxRand) + $LowValue ;
    }

    return $rand_val ;
}   //  function gaussianWeightedRisingRandom()


function gaussianWeightedFallingRandom( $LowValue,
                                        $maxRand )
{
    //  Adjust a gaussian random value to fit within our specified range
    //      by 'trimming' the extreme values as the distribution curve
    //      approaches +/- infinity
    //  The division by 4 is an arbitrary value to help fit the distribution
    //      within our required range
    $rand_val = $LowValue + $maxRand ;
    while (($rand_val < $LowValue) || ($rand_val >= ($LowValue + $maxRand))) {
        $rand_val = floor((abs(gauss()) / 4) * $maxRand) + $LowValue ;
    }

    return $rand_val ;
}   //  function gaussianWeightedFallingRandom()


function logarithmic($mean=1.0, $lambda=5.0)
{
    return ($mean * -log(random_0_1())) / $lambda ;
}   //  function logarithmic()


function logarithmicWeightedRandom( $LowValue,
                                    $maxRand )
{
    do {
        $rand_val = logarithmic() ;
    } while ($rand_val > 1) ;

    return floor($rand_val * $maxRand) + $LowValue ;
}   //  function logarithmicWeightedRandom()


function logarithmic10( $lambda=0.5 )
{
    return abs(-log10(random_0_1()) / $lambda) ;
}   //  function logarithmic10()


function logarithmic10WeightedRandom( $LowValue,
                                      $maxRand )
{
    do {
        $rand_val = logarithmic10() ;
    } while ($rand_val > 1) ;

    return floor($rand_val * $maxRand) + $LowValue ;
}   //  function logarithmic10WeightedRandom()


function gamma( $lambda=3.0 )
{
    $wLambda = $lambda + 1.0 ;
    if ($lambda <= 8.0) {
        //  Use direct method, adding waiting times
        $x = 1.0 ;
        for ($j = 1; $j <= $wLambda; $j++) {
            $x *= random_0_1() ;
        }
        $x = -log($x) ;
    } else {
        //  Use rejection method
        do {
            do {
                //  Generate the tangent of a random angle, the equivalent of
                //      $y = tan(pi * random_0_1())
                do {
                    $v1 = random_0_1() ;
                    $v2 = random_PN() ;
                } while (($v1 * $v1 + $v2 * $v2) > 1.0) ;
                $y = $v2 / $v1 ;
                $s = sqrt(2.0 * $lambda + 1.0) ;
                $x = $s * $y + $lambda ;
            //  Reject in the region of zero probability
            } while ($x <= 0.0) ;
            //  Ratio of probability function to comparison function
            $e = (1.0 + $y * $y) * exp($lambda * log($x / $lambda) - $s * $y) ;
        //  Reject on the basis of a second uniform deviate
        } while (random_0_1() > $e) ;
    }

    return $x ;
}   //  function gamma()


function gammaWeightedRandom( $LowValue,
                              $maxRand )
{
    do {
        $rand_val = gamma() / 12 ;
    } while ($rand_val > 1) ;

    return floor($rand_val * $maxRand) + $LowValue ;
}   //  function gammaWeightedRandom()


function QaDgammaWeightedRandom( $LowValue,
                                 $maxRand )
{
    return round((asin(random_0_1()) + (asin(random_0_1()))) * $maxRand / pi()) + $LowValue ;
}   //  function QaDgammaWeightedRandom()


function gammaln($in)
{
    $tmp = $in + 4.5 ;
    $tmp -= ($in - 0.5) * log($tmp) ;

    $ser = 1.000000000190015
            + (76.18009172947146 / $in)
            - (86.50532032941677 / ($in + 1.0))
            + (24.01409824083091 / ($in + 2.0))
            - (1.231739572450155 / ($in + 3.0))
            + (0.1208650973866179e-2 / ($in + 4.0))
            - (0.5395239384953e-5 / ($in + 5.0)) ;

    return (log(2.5066282746310005 * $ser) - $tmp) ;
}   //  function gammaln()


function poisson( $lambda=1.0 )
{
    static $oldLambda ;
    static $g, $sq, $alxm ;

    if ($lambda <= 12.0) {
        //  Use direct method
        if ($lambda <> $oldLambda) {
            $oldLambda = $lambda ;
            $g = exp(-$lambda) ;
        }
        $x = -1 ;
        $t = 1.0 ;
        do {
            ++$x ;
            $t *= random_0_1() ;
        } while ($t > $g) ;
    } else {
        //  Use rejection method
        if ($lambda <> $oldLambda) {
            $oldLambda = $lambda ;
            $sq = sqrt(2.0 * $lambda) ;
            $alxm = log($lambda) ;
            $g = $lambda * $alxm - gammaln($lambda + 1.0) ;
        }
        do {
            do {
                //  $y is a deviate from a Lorentzian comparison function
                $y = tan(pi() * random_0_1()) ;
                $x = $sq * $y + $lambda ;
            //  Reject if close to zero probability
            } while ($x < 0.0) ;
            $x = floor($x) ;
            //  Ratio of the desired distribution to the comparison function
            //  We accept or reject by comparing it to another uniform deviate
            //  The factor 0.9 is used so that $t never exceeds 1
            $t = 0.9 * (1.0 + $y * $y) * exp($x * $alxm - gammaln($x + 1.0) - $g) ;
        } while (random_0_1() > $t) ;
    }

    return $x ;
}   //  function poisson()


function poissonWeightedRandom( $LowValue,
                                $maxRand )
{
    do {
        $rand_val = poisson() / $maxRand ;
    } while ($rand_val > 1) ;

    return floor($x * $maxRand) + $LowValue ;
}   //  function poissonWeightedRandom()


function binomial( $lambda=6.0 )
{
}


function domeWeightedRandom( $LowValue,
                             $maxRand )
{
    return floor(sin(random_0_1() * (pi() / 2)) * $maxRand) + $LowValue ;
}   //  function bellWeightedRandom()


function sawWeightedRandom( $LowValue,
                            $maxRand )
{
    return floor((atan(random_0_1()) + atan(random_0_1())) * $maxRand / (pi()/2)) + $LowValue ;
}   //  function sawWeightedRandom()


function pyramidWeightedRandom( $LowValue,
                               $maxRand )
{
    return floor((random_0_1() + random_0_1()) / 2 * $maxRand) + $LowValue ;
}   //  function pyramidWeightedRandom()


function linearWeightedRandom( $LowValue,
                               $maxRand )
{
    return floor(random_0_1() * ($maxRand)) + $LowValue ;
}   //  function linearWeightedRandom()


function nonWeightedRandom( $LowValue,
                            $maxRand )
{
    return rand($LowValue,$maxRand+$LowValue-1) ;
}   //  function nonWeightedRandom()




function weightedRandom( $Method,
                         $LowValue,
                         $maxRand )
{
    switch($Method) {
        case RandomGaussian         :
            $rVal = gaussianWeightedRandom( $LowValue, $maxRand ) ;
            break ;
        case RandomBell             :
            $rVal = bellWeightedRandom( $LowValue, $maxRand ) ;
            break ;
        case RandomGaussianRising   :
            $rVal = gaussianWeightedRisingRandom( $LowValue, $maxRand ) ;
            break ;
        case RandomGaussianFalling  :
            $rVal = gaussianWeightedFallingRandom( $LowValue, $maxRand ) ;
            break ;
        case RandomGamma            :
            $rVal = gammaWeightedRandom( $LowValue, $maxRand ) ;
            break ;
        case RandomGammaQaD         :
            $rVal = QaDgammaWeightedRandom( $LowValue, $maxRand ) ;
            break ;
        case RandomLogarithmic10    :
            $rVal = logarithmic10WeightedRandom( $LowValue, $maxRand ) ;
            break ;
        case RandomLogarithmic      :
            $rVal = logarithmicWeightedRandom( $LowValue, $maxRand ) ;
            break ;
        case RandomPoisson          :
            $rVal = poissonWeightedRandom( $LowValue, $maxRand ) ;
            break ;
        case RandomDome             :
            $rVal = domeWeightedRandom( $LowValue, $maxRand ) ;
            break ;
        case RandomSaw              :
            $rVal = sawWeightedRandom( $LowValue, $maxRand ) ;
            break ;
        case RandomPyramid          :
            $rVal = pyramidWeightedRandom( $LowValue, $maxRand ) ;
            break ;
        case RandomLinear           :
            $rVal = linearWeightedRandom( $LowValue, $maxRand ) ;
            break ;
        default                     :
            $rVal = nonWeightedRandom( $LowValue, $maxRand ) ;
            break ;
    }

    return $rVal;
}

?>

Written years ago for PHP4, simply pick your distribution:

<?php

define( 'RandomGaussian',           'gaussian' ) ;          //  gaussianWeightedRandom()
define( 'RandomBell',               'bell' ) ;              //  bellWeightedRandom()
define( 'RandomGaussianRising',     'gaussianRising' ) ;    //  gaussianWeightedRisingRandom()
define( 'RandomGaussianFalling',    'gaussianFalling' ) ;   //  gaussianWeightedFallingRandom()
define( 'RandomGamma',              'gamma' ) ;             //  gammaWeightedRandom()
define( 'RandomGammaQaD',           'gammaQaD' ) ;          //  QaDgammaWeightedRandom()
define( 'RandomLogarithmic10',      'log10' ) ;             //  logarithmic10WeightedRandom()
define( 'RandomLogarithmic',        'log' ) ;               //  logarithmicWeightedRandom()
define( 'RandomPoisson',            'poisson' ) ;           //  poissonWeightedRandom()
define( 'RandomDome',               'dome' ) ;              //  domeWeightedRandom()
define( 'RandomSaw',                'saw' ) ;               //  sawWeightedRandom()
define( 'RandomPyramid',            'pyramid' ) ;           //  pyramidWeightedRandom()
define( 'RandomLinear',             'linear' ) ;            //  linearWeightedRandom()
define( 'RandomUnweighted',         'non' ) ;               //  nonWeightedRandom()



function mkseed()
{
    srand(hexdec(substr(md5(microtime()), -8)) & 0x7fffffff) ;
}   //  function mkseed()




/*
function factorial($in) {
    if ($in == 1) {
        return $in ;
    }
    return ($in * factorial($in - 1.0)) ;
}   //  function factorial()


function factorial($in) {
    $out = 1 ;
    for ($i = 2; $i <= $in; $i++) {
        $out *= $i ;
    }

    return $out ;
}   //  function factorial()
*/




function random_0_1()
{
    //  returns random number using mt_rand() with a flat distribution from 0 to 1 inclusive
    //
    return (float) mt_rand() / (float) mt_getrandmax() ;
}   //  random_0_1()


function random_PN()
{
    //  returns random number using mt_rand() with a flat distribution from -1 to 1 inclusive
    //
    return (2.0 * random_0_1()) - 1.0 ;
}   //  function random_PN()




function gauss()
{
    static $useExists = false ;
    static $useValue ;

    if ($useExists) {
        //  Use value from a previous call to this function
        //
        $useExists = false ;
        return $useValue ;
    } else {
        //  Polar form of the Box-Muller transformation
        //
        $w = 2.0 ;
        while (($w >= 1.0) || ($w == 0.0)) {
            $x = random_PN() ;
            $y = random_PN() ;
            $w = ($x * $x) + ($y * $y) ;
        }
        $w = sqrt((-2.0 * log($w)) / $w) ;

        //  Set value for next call to this function
        //
        $useValue = $y * $w ;
        $useExists = true ;

        return $x * $w ;
    }
}   //  function gauss()


function gauss_ms( $mean,
                   $stddev )
{
    //  Adjust our gaussian random to fit the mean and standard deviation
    //  The division by 4 is an arbitrary value to help fit the distribution
    //      within our required range, and gives a best fit for $stddev = 1.0
    //
    return gauss() * ($stddev/4) + $mean;
}   //  function gauss_ms()


function gaussianWeightedRandom( $LowValue,
                                 $maxRand,
                                 $mean=0.0,
                                 $stddev=2.0 )
{
    //  Adjust a gaussian random value to fit within our specified range
    //      by 'trimming' the extreme values as the distribution curve
    //      approaches +/- infinity
    $rand_val = $LowValue + $maxRand ;
    while (($rand_val < $LowValue) || ($rand_val >= ($LowValue + $maxRand))) {
        $rand_val = floor(gauss_ms($mean,$stddev) * $maxRand) + $LowValue ;
        $rand_val = ($rand_val + $maxRand) / 2 ;
    }

    return $rand_val ;
}   //  function gaussianWeightedRandom()


function bellWeightedRandom( $LowValue,
                             $maxRand )
{
    return gaussianWeightedRandom( $LowValue, $maxRand, 0.0, 1.0 ) ;
}   //  function bellWeightedRandom()


function gaussianWeightedRisingRandom( $LowValue,
                                       $maxRand )
{
    //  Adjust a gaussian random value to fit within our specified range
    //      by 'trimming' the extreme values as the distribution curve
    //      approaches +/- infinity
    //  The division by 4 is an arbitrary value to help fit the distribution
    //      within our required range
    $rand_val = $LowValue + $maxRand ;
    while (($rand_val < $LowValue) || ($rand_val >= ($LowValue + $maxRand))) {
        $rand_val = $maxRand - round((abs(gauss()) / 4) * $maxRand) + $LowValue ;
    }

    return $rand_val ;
}   //  function gaussianWeightedRisingRandom()


function gaussianWeightedFallingRandom( $LowValue,
                                        $maxRand )
{
    //  Adjust a gaussian random value to fit within our specified range
    //      by 'trimming' the extreme values as the distribution curve
    //      approaches +/- infinity
    //  The division by 4 is an arbitrary value to help fit the distribution
    //      within our required range
    $rand_val = $LowValue + $maxRand ;
    while (($rand_val < $LowValue) || ($rand_val >= ($LowValue + $maxRand))) {
        $rand_val = floor((abs(gauss()) / 4) * $maxRand) + $LowValue ;
    }

    return $rand_val ;
}   //  function gaussianWeightedFallingRandom()


function logarithmic($mean=1.0, $lambda=5.0)
{
    return ($mean * -log(random_0_1())) / $lambda ;
}   //  function logarithmic()


function logarithmicWeightedRandom( $LowValue,
                                    $maxRand )
{
    do {
        $rand_val = logarithmic() ;
    } while ($rand_val > 1) ;

    return floor($rand_val * $maxRand) + $LowValue ;
}   //  function logarithmicWeightedRandom()


function logarithmic10( $lambda=0.5 )
{
    return abs(-log10(random_0_1()) / $lambda) ;
}   //  function logarithmic10()


function logarithmic10WeightedRandom( $LowValue,
                                      $maxRand )
{
    do {
        $rand_val = logarithmic10() ;
    } while ($rand_val > 1) ;

    return floor($rand_val * $maxRand) + $LowValue ;
}   //  function logarithmic10WeightedRandom()


function gamma( $lambda=3.0 )
{
    $wLambda = $lambda + 1.0 ;
    if ($lambda <= 8.0) {
        //  Use direct method, adding waiting times
        $x = 1.0 ;
        for ($j = 1; $j <= $wLambda; $j++) {
            $x *= random_0_1() ;
        }
        $x = -log($x) ;
    } else {
        //  Use rejection method
        do {
            do {
                //  Generate the tangent of a random angle, the equivalent of
                //      $y = tan(pi * random_0_1())
                do {
                    $v1 = random_0_1() ;
                    $v2 = random_PN() ;
                } while (($v1 * $v1 + $v2 * $v2) > 1.0) ;
                $y = $v2 / $v1 ;
                $s = sqrt(2.0 * $lambda + 1.0) ;
                $x = $s * $y + $lambda ;
            //  Reject in the region of zero probability
            } while ($x <= 0.0) ;
            //  Ratio of probability function to comparison function
            $e = (1.0 + $y * $y) * exp($lambda * log($x / $lambda) - $s * $y) ;
        //  Reject on the basis of a second uniform deviate
        } while (random_0_1() > $e) ;
    }

    return $x ;
}   //  function gamma()


function gammaWeightedRandom( $LowValue,
                              $maxRand )
{
    do {
        $rand_val = gamma() / 12 ;
    } while ($rand_val > 1) ;

    return floor($rand_val * $maxRand) + $LowValue ;
}   //  function gammaWeightedRandom()


function QaDgammaWeightedRandom( $LowValue,
                                 $maxRand )
{
    return round((asin(random_0_1()) + (asin(random_0_1()))) * $maxRand / pi()) + $LowValue ;
}   //  function QaDgammaWeightedRandom()


function gammaln($in)
{
    $tmp = $in + 4.5 ;
    $tmp -= ($in - 0.5) * log($tmp) ;

    $ser = 1.000000000190015
            + (76.18009172947146 / $in)
            - (86.50532032941677 / ($in + 1.0))
            + (24.01409824083091 / ($in + 2.0))
            - (1.231739572450155 / ($in + 3.0))
            + (0.1208650973866179e-2 / ($in + 4.0))
            - (0.5395239384953e-5 / ($in + 5.0)) ;

    return (log(2.5066282746310005 * $ser) - $tmp) ;
}   //  function gammaln()


function poisson( $lambda=1.0 )
{
    static $oldLambda ;
    static $g, $sq, $alxm ;

    if ($lambda <= 12.0) {
        //  Use direct method
        if ($lambda <> $oldLambda) {
            $oldLambda = $lambda ;
            $g = exp(-$lambda) ;
        }
        $x = -1 ;
        $t = 1.0 ;
        do {
            ++$x ;
            $t *= random_0_1() ;
        } while ($t > $g) ;
    } else {
        //  Use rejection method
        if ($lambda <> $oldLambda) {
            $oldLambda = $lambda ;
            $sq = sqrt(2.0 * $lambda) ;
            $alxm = log($lambda) ;
            $g = $lambda * $alxm - gammaln($lambda + 1.0) ;
        }
        do {
            do {
                //  $y is a deviate from a Lorentzian comparison function
                $y = tan(pi() * random_0_1()) ;
                $x = $sq * $y + $lambda ;
            //  Reject if close to zero probability
            } while ($x < 0.0) ;
            $x = floor($x) ;
            //  Ratio of the desired distribution to the comparison function
            //  We accept or reject by comparing it to another uniform deviate
            //  The factor 0.9 is used so that $t never exceeds 1
            $t = 0.9 * (1.0 + $y * $y) * exp($x * $alxm - gammaln($x + 1.0) - $g) ;
        } while (random_0_1() > $t) ;
    }

    return $x ;
}   //  function poisson()


function poissonWeightedRandom( $LowValue,
                                $maxRand )
{
    do {
        $rand_val = poisson() / $maxRand ;
    } while ($rand_val > 1) ;

    return floor($x * $maxRand) + $LowValue ;
}   //  function poissonWeightedRandom()


function binomial( $lambda=6.0 )
{
}


function domeWeightedRandom( $LowValue,
                             $maxRand )
{
    return floor(sin(random_0_1() * (pi() / 2)) * $maxRand) + $LowValue ;
}   //  function bellWeightedRandom()


function sawWeightedRandom( $LowValue,
                            $maxRand )
{
    return floor((atan(random_0_1()) + atan(random_0_1())) * $maxRand / (pi()/2)) + $LowValue ;
}   //  function sawWeightedRandom()


function pyramidWeightedRandom( $LowValue,
                               $maxRand )
{
    return floor((random_0_1() + random_0_1()) / 2 * $maxRand) + $LowValue ;
}   //  function pyramidWeightedRandom()


function linearWeightedRandom( $LowValue,
                               $maxRand )
{
    return floor(random_0_1() * ($maxRand)) + $LowValue ;
}   //  function linearWeightedRandom()


function nonWeightedRandom( $LowValue,
                            $maxRand )
{
    return rand($LowValue,$maxRand+$LowValue-1) ;
}   //  function nonWeightedRandom()




function weightedRandom( $Method,
                         $LowValue,
                         $maxRand )
{
    switch($Method) {
        case RandomGaussian         :
            $rVal = gaussianWeightedRandom( $LowValue, $maxRand ) ;
            break ;
        case RandomBell             :
            $rVal = bellWeightedRandom( $LowValue, $maxRand ) ;
            break ;
        case RandomGaussianRising   :
            $rVal = gaussianWeightedRisingRandom( $LowValue, $maxRand ) ;
            break ;
        case RandomGaussianFalling  :
            $rVal = gaussianWeightedFallingRandom( $LowValue, $maxRand ) ;
            break ;
        case RandomGamma            :
            $rVal = gammaWeightedRandom( $LowValue, $maxRand ) ;
            break ;
        case RandomGammaQaD         :
            $rVal = QaDgammaWeightedRandom( $LowValue, $maxRand ) ;
            break ;
        case RandomLogarithmic10    :
            $rVal = logarithmic10WeightedRandom( $LowValue, $maxRand ) ;
            break ;
        case RandomLogarithmic      :
            $rVal = logarithmicWeightedRandom( $LowValue, $maxRand ) ;
            break ;
        case RandomPoisson          :
            $rVal = poissonWeightedRandom( $LowValue, $maxRand ) ;
            break ;
        case RandomDome             :
            $rVal = domeWeightedRandom( $LowValue, $maxRand ) ;
            break ;
        case RandomSaw              :
            $rVal = sawWeightedRandom( $LowValue, $maxRand ) ;
            break ;
        case RandomPyramid          :
            $rVal = pyramidWeightedRandom( $LowValue, $maxRand ) ;
            break ;
        case RandomLinear           :
            $rVal = linearWeightedRandom( $LowValue, $maxRand ) ;
            break ;
        default                     :
            $rVal = nonWeightedRandom( $LowValue, $maxRand ) ;
            break ;
    }

    return $rVal;
}

?>
任性一次 2024-09-14 08:54:22

生成遵循给定分布的随机数的最简单(但不是很有效)的方法是一种称为 Von Neumann 的技术拒绝

该技术的简单解释如下。创建一个完全封闭您的发行版的盒子。 (我们将您的分布称为f),然后在框中选择一个随机点(x,y)。如果 y < f(x),然后使用x作为随机数。如果 y > f(x),然后丢弃 xy 并选择另一个点。继续下去,直到有足够数量的值可供使用。不拒绝的x值将按照f分配。

The easiest (but not very efficient) way to generate random numbers that follow a given distribution is a technique called Von Neumann Rejection.

The simple explination of the technique is this. Create a box that completely encloses your distribution. (lets call your distribution f) Then pick a random point (x,y) in the box. If y < f(x), then use x as a random number. If y > f(x), then discard both x and y and pick another point. Continue until you have a sufficient amount of values to use. The values of x that you don't reject will be distributed according to f.

离鸿 2024-09-14 08:54:22

这种天真的做法很可能会以某种我现在看不到的方式扭曲分布。这个想法只是迭代你的第一个数据集,排序并成对。然后在每对之间随机化 15 个新数字以获得新数组。

Ruby 示例,因为我不太会说 PHP。希望这样一个简单的想法应该很容易转化为 PHP。

numbers=[0.1,0.1,0.12,0.13,0.15,0.17,0.3,0.4,0.42,0.6,1,3,5,7,13,19,27,42,69]
more_numbers=[]
numbers.each_cons(2) { |a,b| 15.times { more_numbers << a+rand()*(b-a) } }
more_numbers.sort!

This naive way of doing it will most probably skew the distribution in some way I can't see right now. The idea is simply to iterate over your first dataset, sorted and as pairs. Then randomize 15 new numbers inbetween each pair to get the new array.

Ruby example, since I don't speak much PHP. Hopefully such a simple idea should be easy to translate into PHP.

numbers=[0.1,0.1,0.12,0.13,0.15,0.17,0.3,0.4,0.42,0.6,1,3,5,7,13,19,27,42,69]
more_numbers=[]
numbers.each_cons(2) { |a,b| 15.times { more_numbers << a+rand()*(b-a) } }
more_numbers.sort!
~没有更多了~
我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
原文