具有无限列表的foldl 与foldr 行为
这个问题中的 myAny 函数的代码< /a> 使用foldr。当谓词满足时,它会停止处理无限列表。
我使用 Foldl 重写了它:(
myAny :: (a -> Bool) -> [a] -> Bool
myAny p list = foldl step False list
where
step acc item = p item || acc
请注意,step 函数的参数已正确反转。)
但是,它不再停止处理无限列表。
我尝试跟踪函数的执行,如 Apocalisp 的回答:
myAny even [1..]
foldl step False [1..]
step (foldl step False [2..]) 1
even 1 || (foldl step False [2..])
False || (foldl step False [2..])
foldl step False [2..]
step (foldl step False [3..]) 2
even 2 || (foldl step False [3..])
True || (foldl step False [3..])
True
然而,这不是函数的行为方式。这怎么错了?
The code for the myAny function in this question uses foldr. It stops processing an infinite list when the predicate is satisfied.
I rewrote it using foldl:
myAny :: (a -> Bool) -> [a] -> Bool
myAny p list = foldl step False list
where
step acc item = p item || acc
(Note that the arguments to the step function are correctly reversed.)
However, it no longer stops processing infinite lists.
I attempted to trace the function's execution as in Apocalisp's answer:
myAny even [1..]
foldl step False [1..]
step (foldl step False [2..]) 1
even 1 || (foldl step False [2..])
False || (foldl step False [2..])
foldl step False [2..]
step (foldl step False [3..]) 2
even 2 || (foldl step False [3..])
True || (foldl step False [3..])
True
However, this is not the way the function behaves. How is this wrong?
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。
绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论
评论(4)
fold
的不同之处似乎是常见的混乱来源,因此这里有一个更一般的概述:考虑折叠 n 个值的列表
[x1, x2, x3, x4 ... xn ]
带有一些函数f
和种子z
。foldl
为:f ( ... (f (f (f (fz x1) x2) x3) x4) ...) xn< /code>
foldr
是:f x1 (f x2 (f x3 (f x4 ... (f xn z) ... )))
f
应用于下一个值以及折叠列表其余部分的结果。foldr (:) []
返回未更改的列表。这里有一个稍微微妙的点,有时会让人绊倒:因为
foldl
是向后,f
的每个应用都被添加到外部< /em> 结果;并且因为它是惰性的,所以在需要结果之前不会评估任何内容。这意味着要计算结果的任何部分,Haskell 首先迭代整个列表,构建嵌套函数应用程序的表达式,然后计算最外面的函数,将其参数计算为需要。如果f
总是使用它的第一个参数,这意味着Haskell必须一直递归到最里面的项,然后向后计算f
的每个应用程序。这显然与大多数函数式程序员所了解和喜爱的高效尾递归相去甚远!
事实上,尽管
foldl
在技术上是尾递归的,但由于整个结果表达式是在计算任何内容之前构建的,foldl
可能会导致堆栈溢出!另一方面,考虑
foldr
。它也是惰性的,但由于它向前运行,f
的每个应用都会添加到结果的内部。因此,为了计算结果,Haskell 构造了一个单函数应用程序,其第二个参数是折叠列表的其余部分。如果f
在其第二个参数(例如数据构造函数)中是惰性的,那么结果将是增量惰性,仅当某些部分时才计算折叠的每个步骤评估需要的结果。因此,我们可以明白为什么
foldr
有时可以在无限列表上工作,而foldl
却不能:前者可以将无限列表惰性地转换为另一个惰性无限数据结构,而后者必须检查整个列表以生成结果的任何部分。另一方面,带有立即需要两个参数的函数的foldr
(例如(+)
),其工作方式(或者更确切地说,不起作用)与非常相似Foldl
,在评估之前构建一个巨大的表达式。因此,需要注意的两个要点是:
foldr
可以将一种惰性递归数据结构转换为另一种。您可能已经注意到,听起来
foldr
可以做foldl
可以做的所有事情,甚至更多。这是真实的!事实上,foldl 几乎没用!但是,如果我们想通过折叠一个大(但不是无限)列表来产生非惰性结果怎么办?为此,我们需要一个严格折叠,即标准库精心提供了:
foldl'
是:f ( ... ( f (f (f (fz x1) x2) x3) x4) ...) xn
foldl' (flip (:)) []
反转列表。因为
foldl'
是严格,为了计算结果,Haskell 将在每一步评估f
,而不是让左派论证积累了一个巨大的、未经评估的表达。这为我们提供了我们想要的通常的、高效的尾递归!换句话说:foldl'
可以有效地折叠大型列表。foldl'
将挂在无限循环中(不会导致堆栈溢出) )在无限列表上。Haskell wiki 有一个讨论此问题的页面,如出色地。
How
fold
s differ seems to be a frequent source of confusion, so here's a more general overview:Consider folding a list of n values
[x1, x2, x3, x4 ... xn ]
with some functionf
and seedz
.foldl
is:f ( ... (f (f (f (f z x1) x2) x3) x4) ...) xn
foldl (flip (:)) []
reverses a list.foldr
is:f x1 (f x2 (f x3 (f x4 ... (f xn z) ... )))
f
to the next value and the result of folding the rest of the list.foldr (:) []
returns a list unchanged.There's a slightly subtle point here that trips people up sometimes: Because
foldl
is backwards each application off
is added to the outside of the result; and because it is lazy, nothing is evaluated until the result is required. This means that to compute any part of the result, Haskell first iterates through the entire list constructing an expression of nested function applications, then evaluates the outermost function, evaluating its arguments as needed. Iff
always uses its first argument, this means Haskell has to recurse all the way down to the innermost term, then work backwards computing each application off
.This is obviously a far cry from the efficient tail-recursion most functional programmers know and love!
In fact, even though
foldl
is technically tail-recursive, because the entire result expression is built before evaluating anything,foldl
can cause a stack overflow!On the other hand, consider
foldr
. It's also lazy, but because it runs forwards, each application off
is added to the inside of the result. So, to compute the result, Haskell constructs a single function application, the second argument of which is the rest of the folded list. Iff
is lazy in its second argument--a data constructor, for instance--the result will be incrementally lazy, with each step of the fold computed only when some part of the result that needs it is evaluated.So we can see why
foldr
sometimes works on infinite lists whenfoldl
doesn't: The former can lazily convert an infinite list into another lazy infinite data structure, whereas the latter must inspect the entire list to generate any part of the result. On the other hand,foldr
with a function that needs both arguments immediately, such as(+)
, works (or rather, doesn't work) much likefoldl
, building a huge expression before evaluating it.So the two important points to note are these:
foldr
can transform one lazy recursive data structure into another.You may have noticed that it sounds like
foldr
can do everythingfoldl
can, plus more. This is true! In fact, foldl is nearly useless!But what if we want to produce a non-lazy result by folding over a large (but not infinite) list? For this, we want a strict fold, which the standard libraries thoughfully provide:
foldl'
is:f ( ... (f (f (f (f z x1) x2) x3) x4) ...) xn
foldl' (flip (:)) []
reverses a list.Because
foldl'
is strict, to compute the result Haskell will evaluatef
at each step, instead of letting the left argument accumulate a huge, unevaluated expression. This gives us the usual, efficient tail recursion we want! In other words:foldl'
can fold large lists efficiently.foldl'
will hang in an infinite loop (not cause a stack overflow) on an infinite list.The Haskell wiki has a page discussing this, as well.
直观上
,
foldl
始终位于“外侧”或“左侧”,因此它首先被展开。无穷无尽。etc.
Intuitively,
foldl
is always on the "outside" or on the "left" so it gets expanded first. Ad infinitum.您可以在 Haskell 的文档此处中看到,foldl 是尾递归的,如果传递无限,则永远不会结束列表,因为它在返回值之前在下一个参数上调用自身...
You can see in Haskell's documentation here that foldl is tail-recursive and will never end if passed an infinite list, since it calls itself on the next parameter before returning a value...
我不知道 Haskell,但在Scheme 中,fold-right 总是首先对列表的最后一个元素进行“操作”。因此,它不适用于循环列表(与无限列表相同)。
我不确定
fold-right
是否可以编写为尾递归,但对于任何循环列表,您应该会遇到堆栈溢出。fold-left
OTOH 通常是通过尾递归实现的,如果不提前终止,就会陷入无限循环。I dont know Haskell, but in Scheme,
fold-right
will always 'act' on the last element of a list first. Thus is will not work for cyclic list (which is the same as an infinite one).I am not sure if
fold-right
can be written tail-recursive, but for any cyclic list you should get a stack overflow.fold-left
OTOH is normally implemented with tail recursion, and will just get stuck in an infinite loop, if not terminating it early.