使用 Python 进行反距离加权 (IDW) 插值

发布于 2024-09-06 11:16:04 字数 844 浏览 4 评论 0原文

问题: 在 Python 中计算点位置的反距离加权 (IDW) 插值的最佳方法是什么?

一些背景: 目前我正在使用 RPy2 与 R 及其 gstat 模块交互。不幸的是,gstat 模块与 arcgisscripting 冲突,我通过在单独的进程中运行基于 RPy2 的分析来解决这一问题。即使这个问题在最近/未来的版本中得到解决,并且效率可以提高,我仍然想消除对安装 R 的依赖。

gstat 网站确实提供了一个独立的可执行文件,它更容易与我的 python 打包脚本,但我仍然希望有一个不需要多次写入磁盘和启动外部进程的 Python 解决方案。在我正在执行的处理中,对独立点和值集的插值函数的调用次数可能接近 20,000 次。

我特别需要对点进行插值,因此在性能方面,使用 ArcGIS 中的 IDW 函数生成栅格听起来比使用 R 更糟糕......除非有一种方法可以有效地仅屏蔽我需要的点。即使进行了这样的修改,我也不认为性能会那么好。我将研究这个选项作为另一种选择。更新:这里的问题是您与所使用的单元格大小相关。如果减小像元大小以获得更好的精度,则处理需要很长时间。您还需要通过按点提取来跟进......如果您想要特定点的值,那么总的来说这是一个丑陋的方法。

我查看了 scipy 文档,但看起来没有计算 IDW 的直接方法。

我正在考虑推出自己的实现,可能使用一些 scipy 功能来定位最近的点并计算距离。

我错过了一些明显的东西吗?是否有一个我没见过的 python 模块完全符合我的要求?借助 scipy 创建自己的实现是明智的选择吗?

The Question:
What is the best way to calculate inverse distance weighted (IDW) interpolation in Python, for point locations?

Some Background:
Currently I'm using RPy2 to interface with R and its gstat module. Unfortunately, the gstat module conflicts with arcgisscripting which I got around by running RPy2 based analysis in a separate process. Even if this issue is resolved in a recent/future release, and efficiency can be improved, I'd still like to remove my dependency on installing R.

The gstat website does provide a stand alone executable, which is easier to package with my python script, but I still hope for a Python solution which doesn't require multiple writes to disk and launching external processes. The number of calls to the interpolation function, of separate sets of points and values, can approach 20,000 in the processing I'm performing.

I specifically need to interpolate for points, so using the IDW function in ArcGIS to generate rasters sounds even worse than using R, in terms of performance.....unless there is a way to efficiently mask out only the points I need. Even with this modification, I wouldn't expect performance to be all that great. I will look into this option as another alternative. UPDATE: The problem here is you are tied to the cell size you are using. If you reduce the cell-size to get better accuracy, processing takes a long time. You also need to follow up by extracting by points.....over all an ugly method if you want values for specific points.

I have looked at the scipy documentation, but it doesn't look like there is a straight forward way to calculate IDW.

I'm thinking of rolling my own implementation, possibly using some of the scipy functionality to locate the closest points and calculate distances.

Am I missing something obvious? Is there a python module I haven't seen that does exactly what I want? Is creating my own implementation with the aid of scipy a wise choice?

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。

评论(3

如梦 2024-09-13 11:16:04

于 10 月 20 日更改:此类 Invdisttree 结合了反距离加权和
scipy.spatial.KDTree
忘记最初的暴力答案;
恕我直言,这是离散数据插值的选择方法。

""" invdisttree.py: inverse-distance-weighted interpolation using KDTree
    fast, solid, local
"""
from __future__ import division
import numpy as np
from scipy.spatial import cKDTree as KDTree
    # http://docs.scipy.org/doc/scipy/reference/spatial.html

__date__ = "2010-11-09 Nov"  # weights, doc

#...............................................................................
class Invdisttree:
    """ inverse-distance-weighted interpolation using KDTree:
invdisttree = Invdisttree( X, z )  -- data points, values
interpol = invdisttree( q, nnear=3, eps=0, p=1, weights=None, stat=0 )
    interpolates z from the 3 points nearest each query point q;
    For example, interpol[ a query point q ]
    finds the 3 data points nearest q, at distances d1 d2 d3
    and returns the IDW average of the values z1 z2 z3
        (z1/d1 + z2/d2 + z3/d3)
        / (1/d1 + 1/d2 + 1/d3)
        = .55 z1 + .27 z2 + .18 z3  for distances 1 2 3

    q may be one point, or a batch of points.
    eps: approximate nearest, dist <= (1 + eps) * true nearest
    p: use 1 / distance**p
    weights: optional multipliers for 1 / distance**p, of the same shape as q
    stat: accumulate wsum, wn for average weights

How many nearest neighbors should one take ?
a) start with 8 11 14 .. 28 in 2d 3d 4d .. 10d; see Wendel's formula
b) make 3 runs with nnear= e.g. 6 8 10, and look at the results --
    |interpol 6 - interpol 8| etc., or |f - interpol*| if you have f(q).
    I find that runtimes don't increase much at all with nnear -- ymmv.

p=1, p=2 ?
    p=2 weights nearer points more, farther points less.
    In 2d, the circles around query points have areas ~ distance**2,
    so p=2 is inverse-area weighting. For example,
        (z1/area1 + z2/area2 + z3/area3)
        / (1/area1 + 1/area2 + 1/area3)
        = .74 z1 + .18 z2 + .08 z3  for distances 1 2 3
    Similarly, in 3d, p=3 is inverse-volume weighting.

Scaling:
    if different X coordinates measure different things, Euclidean distance
    can be way off.  For example, if X0 is in the range 0 to 1
    but X1 0 to 1000, the X1 distances will swamp X0;
    rescale the data, i.e. make X0.std() ~= X1.std() .

A nice property of IDW is that it's scale-free around query points:
if I have values z1 z2 z3 from 3 points at distances d1 d2 d3,
the IDW average
    (z1/d1 + z2/d2 + z3/d3)
    / (1/d1 + 1/d2 + 1/d3)
is the same for distances 1 2 3, or 10 20 30 -- only the ratios matter.
In contrast, the commonly-used Gaussian kernel exp( - (distance/h)**2 )
is exceedingly sensitive to distance and to h.

    """
# anykernel( dj / av dj ) is also scale-free
# error analysis, |f(x) - idw(x)| ? todo: regular grid, nnear ndim+1, 2*ndim

    def __init__( self, X, z, leafsize=10, stat=0 ):
        assert len(X) == len(z), "len(X) %d != len(z) %d" % (len(X), len(z))
        self.tree = KDTree( X, leafsize=leafsize )  # build the tree
        self.z = z
        self.stat = stat
        self.wn = 0
        self.wsum = None;

    def __call__( self, q, nnear=6, eps=0, p=1, weights=None ):
            # nnear nearest neighbours of each query point --
        q = np.asarray(q)
        qdim = q.ndim
        if qdim == 1:
            q = np.array([q])
        if self.wsum is None:
            self.wsum = np.zeros(nnear)

        self.distances, self.ix = self.tree.query( q, k=nnear, eps=eps )
        interpol = np.zeros( (len(self.distances),) + np.shape(self.z[0]) )
        jinterpol = 0
        for dist, ix in zip( self.distances, self.ix ):
            if nnear == 1:
                wz = self.z[ix]
            elif dist[0] < 1e-10:
                wz = self.z[ix[0]]
            else:  # weight z s by 1/dist --
                w = 1 / dist**p
                if weights is not None:
                    w *= weights[ix]  # >= 0
                w /= np.sum(w)
                wz = np.dot( w, self.z[ix] )
                if self.stat:
                    self.wn += 1
                    self.wsum += w
            interpol[jinterpol] = wz
            jinterpol += 1
        return interpol if qdim > 1  else interpol[0]

#...............................................................................
if __name__ == "__main__":
    import sys

    N = 10000
    Ndim = 2
    Nask = N  # N Nask 1e5: 24 sec 2d, 27 sec 3d on mac g4 ppc
    Nnear = 8  # 8 2d, 11 3d => 5 % chance one-sided -- Wendel, mathoverflow.com
    leafsize = 10
    eps = .1  # approximate nearest, dist <= (1 + eps) * true nearest
    p = 1  # weights ~ 1 / distance**p
    cycle = .25
    seed = 1

    exec "\n".join( sys.argv[1:] )  # python this.py N= ...
    np.random.seed(seed )
    np.set_printoptions( 3, threshold=100, suppress=True )  # .3f

    print "\nInvdisttree:  N %d  Ndim %d  Nask %d  Nnear %d  leafsize %d  eps %.2g  p %.2g" % (
        N, Ndim, Nask, Nnear, leafsize, eps, p)

    def terrain(x):
        """ ~ rolling hills """
        return np.sin( (2*np.pi / cycle) * np.mean( x, axis=-1 ))

    known = np.random.uniform( size=(N,Ndim) ) ** .5  # 1/(p+1): density x^p
    z = terrain( known )
    ask = np.random.uniform( size=(Nask,Ndim) )

#...............................................................................
    invdisttree = Invdisttree( known, z, leafsize=leafsize, stat=1 )
    interpol = invdisttree( ask, nnear=Nnear, eps=eps, p=p )

    print "average distances to nearest points: %s" % \
        np.mean( invdisttree.distances, axis=0 )
    print "average weights: %s" % (invdisttree.wsum / invdisttree.wn)
        # see Wikipedia Zipf's law
    err = np.abs( terrain(ask) - interpol )
    print "average |terrain() - interpolated|: %.2g" % np.mean(err)

    # print "interpolate a single point: %.2g" % \
    #     invdisttree( known[0], nnear=Nnear, eps=eps )

changed 20 Oct: this class Invdisttree combines inverse-distance weighting and
scipy.spatial.KDTree.
Forget the original brute-force answer;
this is imho the method of choice for scattered-data interpolation.

""" invdisttree.py: inverse-distance-weighted interpolation using KDTree
    fast, solid, local
"""
from __future__ import division
import numpy as np
from scipy.spatial import cKDTree as KDTree
    # http://docs.scipy.org/doc/scipy/reference/spatial.html

__date__ = "2010-11-09 Nov"  # weights, doc

#...............................................................................
class Invdisttree:
    """ inverse-distance-weighted interpolation using KDTree:
invdisttree = Invdisttree( X, z )  -- data points, values
interpol = invdisttree( q, nnear=3, eps=0, p=1, weights=None, stat=0 )
    interpolates z from the 3 points nearest each query point q;
    For example, interpol[ a query point q ]
    finds the 3 data points nearest q, at distances d1 d2 d3
    and returns the IDW average of the values z1 z2 z3
        (z1/d1 + z2/d2 + z3/d3)
        / (1/d1 + 1/d2 + 1/d3)
        = .55 z1 + .27 z2 + .18 z3  for distances 1 2 3

    q may be one point, or a batch of points.
    eps: approximate nearest, dist <= (1 + eps) * true nearest
    p: use 1 / distance**p
    weights: optional multipliers for 1 / distance**p, of the same shape as q
    stat: accumulate wsum, wn for average weights

How many nearest neighbors should one take ?
a) start with 8 11 14 .. 28 in 2d 3d 4d .. 10d; see Wendel's formula
b) make 3 runs with nnear= e.g. 6 8 10, and look at the results --
    |interpol 6 - interpol 8| etc., or |f - interpol*| if you have f(q).
    I find that runtimes don't increase much at all with nnear -- ymmv.

p=1, p=2 ?
    p=2 weights nearer points more, farther points less.
    In 2d, the circles around query points have areas ~ distance**2,
    so p=2 is inverse-area weighting. For example,
        (z1/area1 + z2/area2 + z3/area3)
        / (1/area1 + 1/area2 + 1/area3)
        = .74 z1 + .18 z2 + .08 z3  for distances 1 2 3
    Similarly, in 3d, p=3 is inverse-volume weighting.

Scaling:
    if different X coordinates measure different things, Euclidean distance
    can be way off.  For example, if X0 is in the range 0 to 1
    but X1 0 to 1000, the X1 distances will swamp X0;
    rescale the data, i.e. make X0.std() ~= X1.std() .

A nice property of IDW is that it's scale-free around query points:
if I have values z1 z2 z3 from 3 points at distances d1 d2 d3,
the IDW average
    (z1/d1 + z2/d2 + z3/d3)
    / (1/d1 + 1/d2 + 1/d3)
is the same for distances 1 2 3, or 10 20 30 -- only the ratios matter.
In contrast, the commonly-used Gaussian kernel exp( - (distance/h)**2 )
is exceedingly sensitive to distance and to h.

    """
# anykernel( dj / av dj ) is also scale-free
# error analysis, |f(x) - idw(x)| ? todo: regular grid, nnear ndim+1, 2*ndim

    def __init__( self, X, z, leafsize=10, stat=0 ):
        assert len(X) == len(z), "len(X) %d != len(z) %d" % (len(X), len(z))
        self.tree = KDTree( X, leafsize=leafsize )  # build the tree
        self.z = z
        self.stat = stat
        self.wn = 0
        self.wsum = None;

    def __call__( self, q, nnear=6, eps=0, p=1, weights=None ):
            # nnear nearest neighbours of each query point --
        q = np.asarray(q)
        qdim = q.ndim
        if qdim == 1:
            q = np.array([q])
        if self.wsum is None:
            self.wsum = np.zeros(nnear)

        self.distances, self.ix = self.tree.query( q, k=nnear, eps=eps )
        interpol = np.zeros( (len(self.distances),) + np.shape(self.z[0]) )
        jinterpol = 0
        for dist, ix in zip( self.distances, self.ix ):
            if nnear == 1:
                wz = self.z[ix]
            elif dist[0] < 1e-10:
                wz = self.z[ix[0]]
            else:  # weight z s by 1/dist --
                w = 1 / dist**p
                if weights is not None:
                    w *= weights[ix]  # >= 0
                w /= np.sum(w)
                wz = np.dot( w, self.z[ix] )
                if self.stat:
                    self.wn += 1
                    self.wsum += w
            interpol[jinterpol] = wz
            jinterpol += 1
        return interpol if qdim > 1  else interpol[0]

#...............................................................................
if __name__ == "__main__":
    import sys

    N = 10000
    Ndim = 2
    Nask = N  # N Nask 1e5: 24 sec 2d, 27 sec 3d on mac g4 ppc
    Nnear = 8  # 8 2d, 11 3d => 5 % chance one-sided -- Wendel, mathoverflow.com
    leafsize = 10
    eps = .1  # approximate nearest, dist <= (1 + eps) * true nearest
    p = 1  # weights ~ 1 / distance**p
    cycle = .25
    seed = 1

    exec "\n".join( sys.argv[1:] )  # python this.py N= ...
    np.random.seed(seed )
    np.set_printoptions( 3, threshold=100, suppress=True )  # .3f

    print "\nInvdisttree:  N %d  Ndim %d  Nask %d  Nnear %d  leafsize %d  eps %.2g  p %.2g" % (
        N, Ndim, Nask, Nnear, leafsize, eps, p)

    def terrain(x):
        """ ~ rolling hills """
        return np.sin( (2*np.pi / cycle) * np.mean( x, axis=-1 ))

    known = np.random.uniform( size=(N,Ndim) ) ** .5  # 1/(p+1): density x^p
    z = terrain( known )
    ask = np.random.uniform( size=(Nask,Ndim) )

#...............................................................................
    invdisttree = Invdisttree( known, z, leafsize=leafsize, stat=1 )
    interpol = invdisttree( ask, nnear=Nnear, eps=eps, p=p )

    print "average distances to nearest points: %s" % \
        np.mean( invdisttree.distances, axis=0 )
    print "average weights: %s" % (invdisttree.wsum / invdisttree.wn)
        # see Wikipedia Zipf's law
    err = np.abs( terrain(ask) - interpol )
    print "average |terrain() - interpolated|: %.2g" % np.mean(err)

    # print "interpolate a single point: %.2g" % \
    #     invdisttree( known[0], nnear=Nnear, eps=eps )
疯了 2024-09-13 11:16:04

编辑:@Denis是对的,线性Rbf(例如 scipy .interpolate.Rbf 与“function ='线性'”)与 IDW 不同...

(注意,如果您使用大量点,所有这些都会使用过多的内存! )

这是 IDW 的一个简单示例:

def simple_idw(x, y, z, xi, yi):
    dist = distance_matrix(x,y, xi,yi)

    # In IDW, weights are 1 / distance
    weights = 1.0 / dist

    # Make weights sum to one
    weights /= weights.sum(axis=0)

    # Multiply the weights for each interpolated point by all observed Z-values
    zi = np.dot(weights.T, z)
    return zi

而线性 Rbf 则如下:(

def linear_rbf(x, y, z, xi, yi):
    dist = distance_matrix(x,y, xi,yi)

    # Mutual pariwise distances between observations
    internal_dist = distance_matrix(x,y, x,y)

    # Now solve for the weights such that mistfit at the observations is minimized
    weights = np.linalg.solve(internal_dist, z)

    # Multiply the weights for each interpolated point by the distances
    zi =  np.dot(dist.T, weights)
    return zi

此处使用 distance_matrix 函数:)

def distance_matrix(x0, y0, x1, y1):
    obs = np.vstack((x0, y0)).T
    interp = np.vstack((x1, y1)).T

    # Make a distance matrix between pairwise observations
    # Note: from <http://stackoverflow.com/questions/1871536>
    # (Yay for ufuncs!)
    d0 = np.subtract.outer(obs[:,0], interp[:,0])
    d1 = np.subtract.outer(obs[:,1], interp[:,1])

    return np.hypot(d0, d1)

将它们全部放在一个漂亮的复制粘贴示例中会产生一些快速比较图:
自制 IDW 示例情节
(来源:jkington 位于 www.geology.wisc.edu
自制线性 RBF示例图
(来源:jkington 位于 www.geology.wisc.edu
Scipy 的线性 RBF示例图
(来源:jkington 位于 www.geology.wisc.edu

import numpy as np
import matplotlib.pyplot as plt
from scipy.interpolate import Rbf

def main():
    # Setup: Generate data...
    n = 10
    nx, ny = 50, 50
    x, y, z = map(np.random.random, [n, n, n])
    xi = np.linspace(x.min(), x.max(), nx)
    yi = np.linspace(y.min(), y.max(), ny)
    xi, yi = np.meshgrid(xi, yi)
    xi, yi = xi.flatten(), yi.flatten()

    # Calculate IDW
    grid1 = simple_idw(x,y,z,xi,yi)
    grid1 = grid1.reshape((ny, nx))

    # Calculate scipy's RBF
    grid2 = scipy_idw(x,y,z,xi,yi)
    grid2 = grid2.reshape((ny, nx))

    grid3 = linear_rbf(x,y,z,xi,yi)
    print grid3.shape
    grid3 = grid3.reshape((ny, nx))


    # Comparisons...
    plot(x,y,z,grid1)
    plt.title('Homemade IDW')

    plot(x,y,z,grid2)
    plt.title("Scipy's Rbf with function=linear")

    plot(x,y,z,grid3)
    plt.title('Homemade linear Rbf')

    plt.show()

def simple_idw(x, y, z, xi, yi):
    dist = distance_matrix(x,y, xi,yi)

    # In IDW, weights are 1 / distance
    weights = 1.0 / dist

    # Make weights sum to one
    weights /= weights.sum(axis=0)

    # Multiply the weights for each interpolated point by all observed Z-values
    zi = np.dot(weights.T, z)
    return zi

def linear_rbf(x, y, z, xi, yi):
    dist = distance_matrix(x,y, xi,yi)

    # Mutual pariwise distances between observations
    internal_dist = distance_matrix(x,y, x,y)

    # Now solve for the weights such that mistfit at the observations is minimized
    weights = np.linalg.solve(internal_dist, z)

    # Multiply the weights for each interpolated point by the distances
    zi =  np.dot(dist.T, weights)
    return zi


def scipy_idw(x, y, z, xi, yi):
    interp = Rbf(x, y, z, function='linear')
    return interp(xi, yi)

def distance_matrix(x0, y0, x1, y1):
    obs = np.vstack((x0, y0)).T
    interp = np.vstack((x1, y1)).T

    # Make a distance matrix between pairwise observations
    # Note: from <http://stackoverflow.com/questions/1871536>
    # (Yay for ufuncs!)
    d0 = np.subtract.outer(obs[:,0], interp[:,0])
    d1 = np.subtract.outer(obs[:,1], interp[:,1])

    return np.hypot(d0, d1)


def plot(x,y,z,grid):
    plt.figure()
    plt.imshow(grid, extent=(x.min(), x.max(), y.max(), y.min()))
    plt.hold(True)
    plt.scatter(x,y,c=z)
    plt.colorbar()

if __name__ == '__main__':
    main()

Edit: @Denis is right, a linear Rbf (e.g. scipy.interpolate.Rbf with "function='linear'") isn't the same as IDW...

(Note, all of these will use excessive amounts of memory if you're using a large number of points!)

Here's a simple exampe of IDW:

def simple_idw(x, y, z, xi, yi):
    dist = distance_matrix(x,y, xi,yi)

    # In IDW, weights are 1 / distance
    weights = 1.0 / dist

    # Make weights sum to one
    weights /= weights.sum(axis=0)

    # Multiply the weights for each interpolated point by all observed Z-values
    zi = np.dot(weights.T, z)
    return zi

Whereas, here's what a linear Rbf would be:

def linear_rbf(x, y, z, xi, yi):
    dist = distance_matrix(x,y, xi,yi)

    # Mutual pariwise distances between observations
    internal_dist = distance_matrix(x,y, x,y)

    # Now solve for the weights such that mistfit at the observations is minimized
    weights = np.linalg.solve(internal_dist, z)

    # Multiply the weights for each interpolated point by the distances
    zi =  np.dot(dist.T, weights)
    return zi

(Using the distance_matrix function here:)

def distance_matrix(x0, y0, x1, y1):
    obs = np.vstack((x0, y0)).T
    interp = np.vstack((x1, y1)).T

    # Make a distance matrix between pairwise observations
    # Note: from <http://stackoverflow.com/questions/1871536>
    # (Yay for ufuncs!)
    d0 = np.subtract.outer(obs[:,0], interp[:,0])
    d1 = np.subtract.outer(obs[:,1], interp[:,1])

    return np.hypot(d0, d1)

Putting it all together into a nice copy-paste example yields some quick comparison plots:
Homemade IDW example plot
(source: jkington at www.geology.wisc.edu)
Homemade linear RBF example plot
(source: jkington at www.geology.wisc.edu)
Scipy's linear RBF example plot
(source: jkington at www.geology.wisc.edu)

import numpy as np
import matplotlib.pyplot as plt
from scipy.interpolate import Rbf

def main():
    # Setup: Generate data...
    n = 10
    nx, ny = 50, 50
    x, y, z = map(np.random.random, [n, n, n])
    xi = np.linspace(x.min(), x.max(), nx)
    yi = np.linspace(y.min(), y.max(), ny)
    xi, yi = np.meshgrid(xi, yi)
    xi, yi = xi.flatten(), yi.flatten()

    # Calculate IDW
    grid1 = simple_idw(x,y,z,xi,yi)
    grid1 = grid1.reshape((ny, nx))

    # Calculate scipy's RBF
    grid2 = scipy_idw(x,y,z,xi,yi)
    grid2 = grid2.reshape((ny, nx))

    grid3 = linear_rbf(x,y,z,xi,yi)
    print grid3.shape
    grid3 = grid3.reshape((ny, nx))


    # Comparisons...
    plot(x,y,z,grid1)
    plt.title('Homemade IDW')

    plot(x,y,z,grid2)
    plt.title("Scipy's Rbf with function=linear")

    plot(x,y,z,grid3)
    plt.title('Homemade linear Rbf')

    plt.show()

def simple_idw(x, y, z, xi, yi):
    dist = distance_matrix(x,y, xi,yi)

    # In IDW, weights are 1 / distance
    weights = 1.0 / dist

    # Make weights sum to one
    weights /= weights.sum(axis=0)

    # Multiply the weights for each interpolated point by all observed Z-values
    zi = np.dot(weights.T, z)
    return zi

def linear_rbf(x, y, z, xi, yi):
    dist = distance_matrix(x,y, xi,yi)

    # Mutual pariwise distances between observations
    internal_dist = distance_matrix(x,y, x,y)

    # Now solve for the weights such that mistfit at the observations is minimized
    weights = np.linalg.solve(internal_dist, z)

    # Multiply the weights for each interpolated point by the distances
    zi =  np.dot(dist.T, weights)
    return zi


def scipy_idw(x, y, z, xi, yi):
    interp = Rbf(x, y, z, function='linear')
    return interp(xi, yi)

def distance_matrix(x0, y0, x1, y1):
    obs = np.vstack((x0, y0)).T
    interp = np.vstack((x1, y1)).T

    # Make a distance matrix between pairwise observations
    # Note: from <http://stackoverflow.com/questions/1871536>
    # (Yay for ufuncs!)
    d0 = np.subtract.outer(obs[:,0], interp[:,0])
    d1 = np.subtract.outer(obs[:,1], interp[:,1])

    return np.hypot(d0, d1)


def plot(x,y,z,grid):
    plt.figure()
    plt.imshow(grid, extent=(x.min(), x.max(), y.max(), y.min()))
    plt.hold(True)
    plt.scatter(x,y,c=z)
    plt.colorbar()

if __name__ == '__main__':
    main()
假扮的天使 2024-09-13 11:16:04

我还需要一些快速的东西,我从 @joerington 解决方案开始,最终在 numba 结束,

我总是在 scipy、numpy 和 numba 之间进行实验,并选择最好的一个。对于这个问题,我使用 numba,因为额外的 tmp 内存可以忽略不计,但速度却非常快。

使用 numpy 需要在内存和速度之间进行权衡。例如,在 16GB 内存上,如果您想在其他 50000 个点上计算 50000 个点的插值,无论如何,它都会耗尽内存或速度非常慢。

因此,为了节省内存,我们需要使用 for 循环,以获得最小的临时内存分配。但在 numpy 中编写 for 循环意味着失去可能的矢量化。为此,我们有 numba。您可以为在 numpy 上接受 for 循环的函数添加 numba jit,它将在硬件上有效地矢量化 + 在多核上实现额外的并行性。对于巨大的数组情况,它会提供更好的速度,并且您可以在 GPU 上运行它,而无需编写 cuda

一个非常简单的片段是计算距离矩阵,在 IDW 情况下,我们需要逆距离矩阵。但即使对于 IDW 以外的方法,您也可以执行类似的操作。

另外,对于计算斜边的自定义方法,我有几个注意点此处

@nb.njit((nb.float64[:, :], nb.float64[:, :]), parallel=True)
def f2(d0, d1):
    print('Numba with parallel')
    res = np.empty((d0.shape[0], d1.shape[0]), dtype=d0.dtype)
    for i in nb.prange(d0.shape[0]):
        for j in range(d1.shape[0]):
            res[i, j] = np.sqrt((d0[i, 0] - d1[j, 0])**2 + (d0[i, 1] - d1[j, 1])**2)
    return res

最近 numba 也与 scikit 兼容,所以这是+1

请参阅:

为什么 np.hypot 和 np.subtract.outer 与普通广播相比非常快?使用 Numba 并行加速 numpy 进行距离矩阵计算

numpy 中的自定义 dtype 用于纬度、经度,以实现更快的距离矩阵/克里格/IDW 插值计算

I also needed something fast and i started with @joerington solution and ended up finally at numba

I always experiment between scipy, numpy and numba and choose best one. For this problem I use numba, for extra tmp memory is negligible giving super speed.

With using numpy there is a trade-of with memory and speed. For example on a 16GB ram if you want to calculate interpolation of 50000 points on other 50000 points it will go out of memory or be incredibly slow, no matter what.

So to save on memory we need to use for loops so as to have minimum temp memory allocation. But writing for loops in numpy would mean loosing possible vectorization. For this we have numba. You can add numba jit for a function accepting with for loops on numpy and it will effectively vectorize in on hardware + additional parallelism on multi-core. It will give better speed up for huge arrays case and also you can run it on GPU without writing cuda

An extremely simple snippet would be to calculate distance matrix, in IDW case we need inverse distance matrix. But even for methods other than IDW you can do something similar

Also on custom methods for calculation of hypotenuse I have few caution points here

@nb.njit((nb.float64[:, :], nb.float64[:, :]), parallel=True)
def f2(d0, d1):
    print('Numba with parallel')
    res = np.empty((d0.shape[0], d1.shape[0]), dtype=d0.dtype)
    for i in nb.prange(d0.shape[0]):
        for j in range(d1.shape[0]):
            res[i, j] = np.sqrt((d0[i, 0] - d1[j, 0])**2 + (d0[i, 1] - d1[j, 1])**2)
    return res

Also recent numba becoming compatible with scikit, so that is +1

Refer:

Why np.hypot and np.subtract.outer very fast compared to vanilla broadcast ? Using Numba for speedup numpy in parallel for distance matrix calculation

Custom dtype in numpy for lattitude, longitude for faster distance matrix/krigging/IDW interpolation calculations

~没有更多了~
我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
原文