在 iPhone 上实现手写字符识别的最佳方法是什么?

发布于 2024-09-06 03:50:25 字数 101 浏览 10 评论 0原文

在 iPhone 中实现手写字符识别的最佳方法是什么?

我的想法如下:

首先,拍一张手写字的照片。

其次,识别手写字符的图像,然后输出文本。

What is the best way to implement handwritten character recognition in iPhone?

I'm thinking as follows:

First, taking a picture of handwritten character.

Second, recognizing image of handwritten character, and then outputs a text.

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。

评论(2

旧伤还要旧人安 2024-09-13 03:50:25

您可以使用神经网络,因为神经网络在分类方面很好,但答案取决于概率。
但是,如果您可以识别角色中的某种逻辑,则可以使用模糊逻辑,因为这样答案将比神经网络更准确!

you can use neural networks because neural networks are good in classification but the answer depends on probability..
But if you can identify a certain logic in your characters, you can use fuzzy logic because then the answer will be more accurate than in neural networks!!!

玻璃人 2024-09-13 03:50:25

问题出在步骤2:

“2.其次,识别手写字符的图像,然后输出文本。”

这不是图像处理中一个完全解决的问题。事实上,说“没有完全解决”是表明问题非常困难的一种令人愉快的方式。说“使用神经网络”或“尝试遗传算法”是一回事,而实际实现一些可行的东西,并且会超越当前的技术水平,则是另一回事。

首先,我建议从头到尾阅读以下书籍:

字符识别系统,作者:Cheriet、Kharma、Liu 和 Suen。

这是我通常推荐的书,因为它相当最新,它涵盖了各种各样的技术,而且它也相当清楚地表明这不是一个已解决的问题。邦克有一本更古老、更昂贵的书,也是一个很好的资源。

手写识别有部分解决方案。如果您可以选择一个非常具体的应用程序,例如识别支票上写的数字,那么您就可以稍微简化问题。如今,许多 ATM 机都具有良好的 OCR 功能来识别支票金额,但同样,这是一个高度受限的问题。

如果您研究神经网络,那么我希望您在训练完成后永远不必对其进行调试。

The problem is in step 2:

"2. Second, recognizing image of handwritten character, and then outputs a text."

This is not a completely solved problem in image processing. In fact, saying "not completely solved" is a pleasant way of indicating that the problem is insanely hard. It's one thing to say "use a neural net" or "try a genetic algorithm," and another to actually implement something that works, and that would outperform the current state of the art.

As a start, I would recommend reading the following book from cover to cover:

Character Recognition Systems by Cheriet, Kharma, Liu, and Suen

It's the book I usually recommend because it's reasonably up to date, it covers a large variety of techniques, and it also makes fairly clear that this is not a solved problem. There is an older and much more expensive book by Bunke that is also a great resource.

There are partial solutions to handwriting recognition. If you can pick a very specific application, such as recognizing numerals written on a check, then you simplify the problem a bit. Many ATMs these days have good OCR to recognize the amount of a check, but again, this is a highly constrained problem.

If you investigate neural networks, then I hope you never have to debug one once it's trained.

~没有更多了~
我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
原文