使用 R.zoo 绘制带有误差线的多个系列

发布于 2024-09-05 12:10:32 字数 1792 浏览 17 评论 0原文

我的数据如下所示:

   > head(data)
             groupname ob_time dist.mean  dist.sd dur.mean   dur.sd   ct.mean    ct.sd
      1      rowA     0.3  61.67500 39.76515 43.67500 26.35027  8.666667 11.29226
      2      rowA    60.0  45.49167 38.30301 37.58333 27.98207  8.750000 12.46176
      3      rowA   120.0  50.22500 35.89708 40.40000 24.93399  8.000000 10.23363
      4      rowA   180.0  54.05000 41.43919 37.98333 28.03562  8.750000 11.97061
      5      rowA   240.0  51.97500 41.75498 35.60000 25.68243 28.583333 46.14692
      6      rowA   300.0  45.50833 43.10160 32.20833 27.37990 12.833333 14.21800

每个组名都是一个数据系列。由于我想分别绘制每个系列,因此我将它们分开:

> A <- zoo(data[which(groupname=='rowA'),3:8],data[which(groupname=='rowA'),2])
> B <- zoo(data[which(groupname=='rowB'),3:8],data[which(groupname=='rowB'),2])
> C <- zoo(data[which(groupname=='rowC'),3:8],data[which(groupname=='rowC'),2])

ETA:

Thanks to gd047: Now I'm using this:

    z <- dlply(data,.(groupname),function(x) zoo(x[,3:8],x[,2]))

生成的动物园对象如下所示:

> head(z$rowA)
          dist.mean  dist.sd dur.mean   dur.sd   ct.mean    ct.sd
     0.3  61.67500 39.76515 43.67500 26.35027  8.666667 11.29226
     60   45.49167 38.30301 37.58333 27.98207  8.750000 12.46176
     120  50.22500 35.89708 40.40000 24.93399  8.000000 10.23363
     180  54.05000 41.43919 37.98333 28.03562  8.750000 11.97061
     240  51.97500 41.75498 35.60000 25.68243 28.583333 46.14692
     300  45.50833 43.10160 32.20833 27.37990 12.833333 14.21800

因此,如果我想根据时间绘制 dist.mean 并包含等于 +/- dist.sd 的误差线对于每个系列:

  • 如何组合 A、B、C dist.mean 和 dist.sd?
  • 如何制作条形图,或者更好,结果对象的折线图?

I have data that looks like this:

   > head(data)
             groupname ob_time dist.mean  dist.sd dur.mean   dur.sd   ct.mean    ct.sd
      1      rowA     0.3  61.67500 39.76515 43.67500 26.35027  8.666667 11.29226
      2      rowA    60.0  45.49167 38.30301 37.58333 27.98207  8.750000 12.46176
      3      rowA   120.0  50.22500 35.89708 40.40000 24.93399  8.000000 10.23363
      4      rowA   180.0  54.05000 41.43919 37.98333 28.03562  8.750000 11.97061
      5      rowA   240.0  51.97500 41.75498 35.60000 25.68243 28.583333 46.14692
      6      rowA   300.0  45.50833 43.10160 32.20833 27.37990 12.833333 14.21800

Each groupname is a data series. Since I want to plot each series separately, I've separated them like this:

> A <- zoo(data[which(groupname=='rowA'),3:8],data[which(groupname=='rowA'),2])
> B <- zoo(data[which(groupname=='rowB'),3:8],data[which(groupname=='rowB'),2])
> C <- zoo(data[which(groupname=='rowC'),3:8],data[which(groupname=='rowC'),2])

ETA:

Thanks to gd047: Now I'm using this:

    z <- dlply(data,.(groupname),function(x) zoo(x[,3:8],x[,2]))

The resulting zoo objects look like this:

> head(z$rowA)
          dist.mean  dist.sd dur.mean   dur.sd   ct.mean    ct.sd
     0.3  61.67500 39.76515 43.67500 26.35027  8.666667 11.29226
     60   45.49167 38.30301 37.58333 27.98207  8.750000 12.46176
     120  50.22500 35.89708 40.40000 24.93399  8.000000 10.23363
     180  54.05000 41.43919 37.98333 28.03562  8.750000 11.97061
     240  51.97500 41.75498 35.60000 25.68243 28.583333 46.14692
     300  45.50833 43.10160 32.20833 27.37990 12.833333 14.21800

So if I want to plot dist.mean against time and include error bars equal to +/- dist.sd for each series:

  • how do I combine A,B,C dist.mean and dist.sd?
  • how do I make a bar plot, or perhaps better, a line graph of the resulting object?

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。

评论(4

花开半夏魅人心 2024-09-12 12:10:32

我不认为将数据分成三部分只是为了将它们组合在一起以绘制图表有什么意义。这是使用ggplot2库绘制的图:

library(ggplot2)
qplot(ob_time, dist.mean, data=data, colour=groupname, geom=c("line","point")) + 
  geom_errorbar(aes(ymin=dist.mean-dist.sd, ymax=dist.mean+dist.sd))

它沿着自然比例间隔时间值,您可以使用scale_x_continuous来定义实际时间值处的刻度线。让它们等间距比较棘手:您可以将 ob_time 转换为一个因子,但 qplot 拒绝用线连接这些点。

解决方案 1 - 条形图:

qplot(factor(ob_time), dist.mean, data=data, geom=c("bar"), fill=groupname, 
      colour=groupname, position="dodge") + 
geom_errorbar(aes(ymin=dist.mean-dist.sd, ymax=dist.mean+dist.sd), position="dodge")

解决方案 2 - 使用因子的 1,2,... 重新编码手动添加线条:

qplot(factor(ob_time), dist.mean, data=data, geom=c("line","point"), colour=groupname) +
  geom_errorbar(aes(ymin=dist.mean-dist.sd, ymax=dist.mean+dist.sd)) + 
  geom_line(aes(x=as.numeric(factor(ob_time))))

I don't see the point of breaking up the data into three pieces only to have to combine it together for a plot. Here is a plot using the ggplot2 library:

library(ggplot2)
qplot(ob_time, dist.mean, data=data, colour=groupname, geom=c("line","point")) + 
  geom_errorbar(aes(ymin=dist.mean-dist.sd, ymax=dist.mean+dist.sd))

This spaces the time values along the natural scale, you can use scale_x_continuous to define the tickmarks at the actual time values. Having them equally spaced is trickier: you can convert ob_time to a factor, but then qplot refuses to connect the points with a line.

Solution 1 - bar graph:

qplot(factor(ob_time), dist.mean, data=data, geom=c("bar"), fill=groupname, 
      colour=groupname, position="dodge") + 
geom_errorbar(aes(ymin=dist.mean-dist.sd, ymax=dist.mean+dist.sd), position="dodge")

Solution 2 - add lines manually using the 1,2,... recoding of the factor:

qplot(factor(ob_time), dist.mean, data=data, geom=c("line","point"), colour=groupname) +
  geom_errorbar(aes(ymin=dist.mean-dist.sd, ymax=dist.mean+dist.sd)) + 
  geom_line(aes(x=as.numeric(factor(ob_time))))
蓝天白云 2024-09-12 12:10:32

这是我尝试这样做的方式的提示。我忽略了分组,因此您必须修改它以包含多个系列。我也没有去过动物园,因为我了解不多。

g <- (nrow(data)-1)/(3*nrow(data))

plot(data[,"dist.mean"],col=2, type='o',lwd=2,cex=1.5, main="This is the title of the graph",
 xlab="x-Label", ylab="y-Label", xaxt="n",
 ylim=c(0,max(data[,"dist.mean"])+max(data[,"dist.sd"])),
 xlim=c(1-g,nrow(data)+g))
axis(side=1,at=c(1:nrow(data)),labels=data[,"ob_time"])

for (i in 1:nrow(data)) {
lines(c(i,i),c(data[i,"dist.mean"]+data[i,"dist.sd"],data[i,"dist.mean"]-data[i,"dist.sd"]))
lines(c(i-g,i+g),c(data[i,"dist.mean"]+data[i,"dist.sd"], data[i,"dist.mean"]+data[i,"dist.sd"]))
lines(c(i-g,i+g),c(data[i,"dist.mean"]-data[i,"dist.sd"], data[i,"dist.mean"]-data[i,"dist.sd"]))
}

替代文字

This is a hint of the way I would try to do it. I have ignored grouping, so you'll have to modify it to include more than one series. Also I haven't used zoo cause I don't know much.

g <- (nrow(data)-1)/(3*nrow(data))

plot(data[,"dist.mean"],col=2, type='o',lwd=2,cex=1.5, main="This is the title of the graph",
 xlab="x-Label", ylab="y-Label", xaxt="n",
 ylim=c(0,max(data[,"dist.mean"])+max(data[,"dist.sd"])),
 xlim=c(1-g,nrow(data)+g))
axis(side=1,at=c(1:nrow(data)),labels=data[,"ob_time"])

for (i in 1:nrow(data)) {
lines(c(i,i),c(data[i,"dist.mean"]+data[i,"dist.sd"],data[i,"dist.mean"]-data[i,"dist.sd"]))
lines(c(i-g,i+g),c(data[i,"dist.mean"]+data[i,"dist.sd"], data[i,"dist.mean"]+data[i,"dist.sd"]))
lines(c(i-g,i+g),c(data[i,"dist.mean"]-data[i,"dist.sd"], data[i,"dist.mean"]-data[i,"dist.sd"]))
}

alt text

别再吹冷风 2024-09-12 12:10:32

使用带有 split= 参数的 read.zoo 读取数据,以按组名拆分数据。然后将距离、下线和上线绑在一起。最后绘制它们。

Lines <- "groupname ob_time dist.mean  dist.sd dur.mean   dur.sd   ct.mean    ct.sd
rowA     0.3  61.67500 39.76515 43.67500 26.35027  8.666667 11.29226
rowA    60.0  45.49167 38.30301 37.58333 27.98207  8.750000 12.46176
rowA   120.0  50.22500 35.89708 40.40000 24.93399  8.000000 10.23363
rowA   180.0  54.05000 41.43919 37.98333 28.03562  8.750000 11.97061
rowB   240.0  51.97500 41.75498 35.60000 25.68243 28.583333 46.14692
rowB   300.0  45.50833 43.10160 32.20833 27.37990 12.833333 14.21800"

library(zoo)
# next line is only needed until next version of zoo is released
source("http://r-forge.r-project.org/scm/viewvc.php/*checkout*/pkg/zoo/R/read.zoo.R?revision=719&root=zoo")
z <- read.zoo(textConnection(Lines), header = TRUE, split = 1, index = 2)

# pick out the dist and sd columns binding dist with lower & upper 
z.dist <- z[, grep("dist.mean", colnames(z))]
z.sd <- z[, grep("dist.sd", colnames(z))]
zz <- cbind(z = z.dist, lower = z.dist - z.sd, upper = z.dist + z.sd)

# plot using N panels
N <- ncol(z.dist)
ylab <- sub("dist.mean.", "", colnames(z.dist))
plot(zz, screen = 1:N, type = "l", lty = rep(1:2, N*1:2), ylab = ylab)

Read the data in using read.zoo with the split= argument to split it by groupname. Then bind together the dist, lower and upper lines. Finally plot them.

Lines <- "groupname ob_time dist.mean  dist.sd dur.mean   dur.sd   ct.mean    ct.sd
rowA     0.3  61.67500 39.76515 43.67500 26.35027  8.666667 11.29226
rowA    60.0  45.49167 38.30301 37.58333 27.98207  8.750000 12.46176
rowA   120.0  50.22500 35.89708 40.40000 24.93399  8.000000 10.23363
rowA   180.0  54.05000 41.43919 37.98333 28.03562  8.750000 11.97061
rowB   240.0  51.97500 41.75498 35.60000 25.68243 28.583333 46.14692
rowB   300.0  45.50833 43.10160 32.20833 27.37990 12.833333 14.21800"

library(zoo)
# next line is only needed until next version of zoo is released
source("http://r-forge.r-project.org/scm/viewvc.php/*checkout*/pkg/zoo/R/read.zoo.R?revision=719&root=zoo")
z <- read.zoo(textConnection(Lines), header = TRUE, split = 1, index = 2)

# pick out the dist and sd columns binding dist with lower & upper 
z.dist <- z[, grep("dist.mean", colnames(z))]
z.sd <- z[, grep("dist.sd", colnames(z))]
zz <- cbind(z = z.dist, lower = z.dist - z.sd, upper = z.dist + z.sd)

# plot using N panels
N <- ncol(z.dist)
ylab <- sub("dist.mean.", "", colnames(z.dist))
plot(zz, screen = 1:N, type = "l", lty = rep(1:2, N*1:2), ylab = ylab)
病毒体 2024-09-12 12:10:32

我认为您不需要为这种类型的图创建动物园对象,我会直接从数据框中创建动物园对象。当然,可能还有其他原因需要使用 Zoo 对象,例如智能合并、聚合等。

一种选择是latticeExtra 中的 segplot 函数,

library(latticeExtra)
segplot(ob_time ~ (dist.mean + dist.sd) + (dist.mean - dist.sd) | groupname, 
    data = data, centers = dist.mean, horizontal = FALSE)
## and with the latest version of latticeExtra (from R-forge):
trellis.last.object(segments.fun = panel.arrows, ends = "both", angle = 90, length = .1) +
    xyplot(dist.mean ~ ob_time | groupname, data, col = "black", type = "l")

使用 Gabor 的可重现性良好的数据集会生成:

segplot

I don't think you need to create zoo objects for this type of plot, I would do it directly from the data frame. Of course, there may be other reasons to use zoo objects, such a smart merging, aggregation, etc.

One option is the segplot function from latticeExtra

library(latticeExtra)
segplot(ob_time ~ (dist.mean + dist.sd) + (dist.mean - dist.sd) | groupname, 
    data = data, centers = dist.mean, horizontal = FALSE)
## and with the latest version of latticeExtra (from R-forge):
trellis.last.object(segments.fun = panel.arrows, ends = "both", angle = 90, length = .1) +
    xyplot(dist.mean ~ ob_time | groupname, data, col = "black", type = "l")

Using Gabor's nicely-reproducible dataset this produces:

segplot

~没有更多了~
我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
原文