如何在 J 中惯用地生成罗兰素数序列?

发布于 2024-09-05 05:59:53 字数 894 浏览 13 评论 0原文

如果您不熟悉罗兰素数列,可以在此处。我在 J 中创建了一个丑陋的程序单子动词来生成此序列中的前 n 项,如下所示:

rowland =: monad define
    result =. 0 $ 0
    t =. 1 $ 7
    while. (# result) < y do.
        a =. {: t
        n =. 1 + # t
        t =. t , a + n +. a
        d =. | -/ _2 {. t
        if. d > 1 do.
            result =. ~. result , d
        end.
    end.
    result
)

这非常有效,并且它确实生成了第一个 n序列中的项。 (n 个术语,我指的是前 n不同素数。)

以下是 rowland 20 的输出:

5 3 11 23 47 101 7 13 233 467 941 1889 3779 7559 15131 53 30323 60647 121403 242807

我的问题是,如何用更惯用的 J 语言编写这个?我没有任何线索,尽管我确实编写了以下函数来查找数字列表中每个连续数字之间的差异,这是必需的步骤之一。就是这样,尽管它也可能由比我更有经验的 J 程序员重构:

diffs =: monad : '}: (|@-/@(2&{.) , $:@}.) ^: (1 < #) y'

If you're not familiar with the Rowland prime sequence, you can find out about it here. I've created an ugly, procedural monadic verb in J to generate the first n terms in this sequence, as follows:

rowland =: monad define
    result =. 0 $ 0
    t =. 1 $ 7
    while. (# result) < y do.
        a =. {: t
        n =. 1 + # t
        t =. t , a + n +. a
        d =. | -/ _2 {. t
        if. d > 1 do.
            result =. ~. result , d
        end.
    end.
    result
)

This works perfectly, and it indeed generates the first n terms in the sequence. (By n terms, I mean the first n distinct primes.)

Here is the output of rowland 20:

5 3 11 23 47 101 7 13 233 467 941 1889 3779 7559 15131 53 30323 60647 121403 242807

My question is, how can I write this in more idiomatic J? I don't have a clue, although I did write the following function to find the differences between each successive number in a list of numbers, which is one of the required steps. Here it is, although it too could probably be refactored by a more experienced J programmer than I:

diffs =: monad : '}: (|@-/@(2&{.) , $:@}.) ^: (1 < #) y'

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。

评论(2

攒眉千度 2024-09-12 05:59:53

虽然我已经将埃斯坦福德的答案标记为正确的答案,但自从我提出这个问题以来,我已经与 J 取得了长足的进步。下面是在 J 中生成罗兰素数序列的更惯用的方法:

~. (#~ 1&<) | 2 -/\ (, ({: + ({: +. >:@#)))^:(1000 - #) 7

表达式 (, ({: + ({: +. >:@#)))^:(1000 - #) 7 生成最多 1000 个成员的所谓原始序列。该序列的第一个差异可以通过 | 生成2 -/\,即每两个元素之差的绝对值。 (将其与原始问题中我原来的冗长 diffs 动词进行比较。)

最后,我们删除那些和重复的素数 ~。 (#~ 1&<) 获取素数序列。

这比我之前的做法要好得多。它可以很容易地变成一个动词,通过一点递归来生成 n 个素数。

While I already marked estanford's answer as the correct one, I've come a long, long way with J since I asked this question. Here's a much more idiomatic way to generate the rowland prime sequence in J:

~. (#~ 1&<) | 2 -/\ (, ({: + ({: +. >:@#)))^:(1000 - #) 7

The expression (, ({: + ({: +. >:@#)))^:(1000 - #) 7 generates the so-called original sequence up to 1000 members. The first differences of this sequence can be generated by | 2 -/\, i.e., the absolute values of the differences of every two elements. (Compare this to my original, long-winded diffs verb from the original question.)

Lastly, we remove the ones and the duplicate primes ~. (#~ 1&<) to get the sequence of primes.

This is vastly superior to the way I was doing it before. It can easily be turned into a verb to generate n number of primes with a little recursion.

半夏半凉 2024-09-12 05:59:53

我还没有完整的答案,但是这篇文章作者:Roger Hui有一个默认构造,您可以使用它来替换显式的 while 循环。另一个(相关的)途径是将块的内部逻辑变成一个默认表达式,如下所示:(

FUNWITHTACIT =: ] , {: + {: +. 1 + #
rowland =: monad define
    result =. >a:
    t =. 7x
    while. (# result) < y do.
      t =. FUNWITHTACIT t
      d =.  | -/ _2 {. t
      result =. ~.result,((d>1)#d)
    end.
    result
)

不过,为了提高效率,您可能希望保留 if 块,因为我以 result 的方式编写代码无论是否满足条件,都会修改 - 如果不满足,则修改无效。 if 逻辑甚至可以通过使用写回到默认表达式中。议程运算符。)

完整的解决方案包括找出如何将 while 循环内的所有逻辑表示为单个函数,然后使用 Roger 的技巧将 while 逻辑实现为默认表达式。我会看看我能找到什么。

顺便说一句,我让 J 为我构建了 FUNWITHTACIT,方法是获取代码的前几行,手动替换您声明的变量值的函数(我可以这样做,因为它们都在操作)以不同的方式对单个参数进行处理),将 t 的每个实例替换为 y 并告诉 J 构建结果表达式的默认等价物:

]FUNWITHTACIT =: 13 : 'y,({:y)+(1+#y)+.({:y)'
   ] , {: + {: +. 1 + #

使用 13 声明 monad 是J 如何知道采用 monad(否则使用 3 : 0 显式声明,或如您在程序中编写的 monad Define)并将显式表达式转换为默认表达式。

编辑:

这是我在评论中提到的为 Avenue (2) 编写的函数:

candfun =: 3 : '(] , {: + {: +. 1 + #)^:(y) 7'
firstdiff =: [: | 2 -/\ ]
triage =: [: /:~ [: ~. 1&~: # ]
rowland2 =: triage @firstdiff @candfun

该函数使用 Rowland 递归关系生成前 n 个候选数字,评估它们的一阶差异,丢弃所有等于 1 的一阶差异,丢弃所有重复项,并按升序对它们进行排序。我认为这还不是完全令人满意,因为该参数设置了要尝试的候选人数量而不是结果数量。但是,这仍然是进步。

示例:

   rowland2 1000
3 5 7 11 13 23 47 101 233 467 941

这是我发布的第一个函数的一个版本,将每个参数的大小保持在最小值:

NB. rowrec takes y=(n,an) where n is the index and a(n) is the
NB. nth member of the rowland candidate sequence. The base case
NB. is rowrec 1 7. The output is (n+1,a(n+1)).
rowrec =: (1 + {.) , }. + [: +./ 1 0 + ]

rowland3 =: 3 : 0
 result =. >a:
 t =. 1 7
 while. y > #result do.
  ts =. (<"1)2 2 $ t,rowrec t
  fdiff =. |2-/\,>(}.&.>) ts
  if. 1~:fdiff do.
   result =. ~. result,fdiff
  end.
  t =. ,>}.ts
 end.
 /:~ result
) 

它找到前 y 个不同的罗兰素数并按升序呈现它们:

   rowland3 20
3 5 7 11 13 23 47 53 101 233 467 941 1889 3779 7559 15131 30323 60647 121403 242807

这个函数的大部分复杂性来自我的处理盒装数组。这不是漂亮的代码,但它只在计算过程中将 4+#result 许多数据元素(以对数比例增长)保留在内存中。原始函数 rowland(#t)+(#result) 元素保留在内存中(按线性比例增长)。 rowland2 y 构建一个包含 y 多个元素的数组,这使得它的内存配置文件几乎与 rowland 相同,尽管它的增长永远不会超出指定范围边界。我喜欢 rowland2 的紧凑性,但没有公式来预测生成 n 个不同素数所需的 y 的确切大小,该任务需要在试错法,因此在冗余计算上可能使用比 rowlandrowland3 更多的周期。 rowland3 可能比我的 rowland 版本更高效,因为 FUNWITHTACIT 在每次循环迭代时重新计算 #t -- rowland3 只是增加一个计数器,计算强度较小。

尽管如此,我对 rowland3 的显式控制结构并不满意。似乎应该有一种方法可以使用递归或其他方法来完成此行为。

I don't have a full answer yet, but this essay by Roger Hui has a tacit construct you can use to replace explicit while loops. Another (related) avenue would be to make the inner logic of the block into a tacit expression like so:

FUNWITHTACIT =: ] , {: + {: +. 1 + #
rowland =: monad define
    result =. >a:
    t =. 7x
    while. (# result) < y do.
      t =. FUNWITHTACIT t
      d =.  | -/ _2 {. t
      result =. ~.result,((d>1)#d)
    end.
    result
)

(You might want to keep the if block for efficiency, though, since I wrote the code in such a way that result is modified regardless of whether or not the condition was met -- if it wasn't, the modification has no effect. The if logic could even be written back into the tacit expression by using the Agenda operator.)

A complete solution would consist of finding out how to represent all the logic inside the while loop of as a single function, and then use Roger's trick to implement the while logic as a tacit expression. I'll see what I can turn up.

As an aside, I got J to build FUNWITHTACIT for me by taking the first few lines of your code, manually substituting in the functions you declared for the variable values (which I could do because they were all operating on a single argument in different ways), replaced every instance of t with y and told J to build the tacit equivalent of the resulting expression:

]FUNWITHTACIT =: 13 : 'y,({:y)+(1+#y)+.({:y)'
   ] , {: + {: +. 1 + #

Using 13 to declare the monad is how J knows to take a monad (otherwise explicitly declared with 3 : 0, or monad define as you wrote in your program) and convert the explicit expression into a tacit expression.

EDIT:

Here are the functions I wrote for avenue (2) that I mentioned in the comment:

candfun =: 3 : '(] , {: + {: +. 1 + #)^:(y) 7'
firstdiff =: [: | 2 -/\ ]
triage =: [: /:~ [: ~. 1&~: # ]
rowland2 =: triage @firstdiff @candfun

This function generates the first n-many candidate numbers using the Rowland recurrence relation, evaluates their first differences, discards all first-differences equal to 1, discards all duplicates, and sorts them in ascending order. I don't think it's completely satisfactory yet, since the argument sets the number of candidates to try instead of the number of results. But, it's still progress.

Example:

   rowland2 1000
3 5 7 11 13 23 47 101 233 467 941

Here's a version of the first function I posted, keeping the size of each argument to a minimum:

NB. rowrec takes y=(n,an) where n is the index and a(n) is the
NB. nth member of the rowland candidate sequence. The base case
NB. is rowrec 1 7. The output is (n+1,a(n+1)).
rowrec =: (1 + {.) , }. + [: +./ 1 0 + ]

rowland3 =: 3 : 0
 result =. >a:
 t =. 1 7
 while. y > #result do.
  ts =. (<"1)2 2 $ t,rowrec t
  fdiff =. |2-/\,>(}.&.>) ts
  if. 1~:fdiff do.
   result =. ~. result,fdiff
  end.
  t =. ,>}.ts
 end.
 /:~ result
) 

which finds the first y-many distinct Rowland primes and presents them in ascending order:

   rowland3 20
3 5 7 11 13 23 47 53 101 233 467 941 1889 3779 7559 15131 30323 60647 121403 242807

Most of the complexity of this function comes from my handling of boxed arrays. It's not pretty code, but it only keeps 4+#result many data elements (which grows on a log scale) in memory during computation. The original function rowland keeps (#t)+(#result) elements in memory (which grows on a linear scale). rowland2 y builds an array of y-many elements, which makes its memory profile almost the same as rowland even though it never grows beyond a specified bound. I like rowland2 for its compactness, but without a formula to predict the exact size of y needed to generate n-many distinct primes, that task will need to be done on a trial-and-error basis and thus potentially use many more cycles than rowland or rowland3 on redundant calculations. rowland3 is probably more efficient than my version of rowland, since FUNWITHTACIT recomputes #t on every loop iteration -- rowland3 just increments a counter, which is less computationally intensive.

Still, I'm not happy with rowland3's explicit control structures. It seems like there should be a way to accomplish this behavior using recursion or something.

~没有更多了~
我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
原文