在 R 中画两条线,斜率是最佳拟合线值的两倍和一半

发布于 2024-09-04 23:42:00 字数 1190 浏览 11 评论 0原文

我有最适合绘制线条的数据。我需要画另外两条线。一个需要有两倍的坡度,另一个需要有一半的坡度。稍后我将使用该区域对其外部的点进行差异化着色,如下所示: 有条件地为 R 中置信带之外的数据点着色

示例数据集:

## Dataset from http://www.apsnet.org/education/advancedplantpath/topics/RModules/doc1/04_Linear_regression.html

## Disease severity as a function of temperature

# Response variable, disease severity
diseasesev<-c(1.9,3.1,3.3,4.8,5.3,6.1,6.4,7.6,9.8,12.4)

# Predictor variable, (Centigrade)
temperature<-c(2,1,5,5,20,20,23,10,30,25)

## For convenience, the data may be formatted into a dataframe
severity <- as.data.frame(cbind(diseasesev,temperature))

## Fit a linear model for the data and summarize the output from function lm()
severity.lm <- lm(diseasesev~temperature,data=severity)

# Take a look at the data
plot(
  diseasesev~temperature,
  data=severity,
  xlab="Temperature",
  ylab="% Disease Severity",
  pch=16,
  pty="s",
  xlim=c(0,30),
  ylim=c(0,30)
)
title(main="Graph of % Disease Severity vs Temperature")
par(new=TRUE) # don't start a new plot
abline(severity.lm, col="blue")

I have data with a best fit line draw. I need to draw two other lines. One needs to have double the slope and the other need to have half the slope. Later I will use the region to differentially color points outside it as per:
Conditionally colour data points outside of confidence bands in R

Example dataset:

## Dataset from http://www.apsnet.org/education/advancedplantpath/topics/RModules/doc1/04_Linear_regression.html

## Disease severity as a function of temperature

# Response variable, disease severity
diseasesev<-c(1.9,3.1,3.3,4.8,5.3,6.1,6.4,7.6,9.8,12.4)

# Predictor variable, (Centigrade)
temperature<-c(2,1,5,5,20,20,23,10,30,25)

## For convenience, the data may be formatted into a dataframe
severity <- as.data.frame(cbind(diseasesev,temperature))

## Fit a linear model for the data and summarize the output from function lm()
severity.lm <- lm(diseasesev~temperature,data=severity)

# Take a look at the data
plot(
  diseasesev~temperature,
  data=severity,
  xlab="Temperature",
  ylab="% Disease Severity",
  pch=16,
  pty="s",
  xlim=c(0,30),
  ylim=c(0,30)
)
title(main="Graph of % Disease Severity vs Temperature")
par(new=TRUE) # don't start a new plot
abline(severity.lm, col="blue")

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。

评论(2

暗藏城府 2024-09-11 23:42:00

你可以只使用

# This gets the coefficients of the linear regression (intercept and slope)
c <- coef(severity.lm)
abline(c[1], c[2]*2, col="red")
abline(c[1], c[2]/2, col="red")

You can just use

# This gets the coefficients of the linear regression (intercept and slope)
c <- coef(severity.lm)
abline(c[1], c[2]*2, col="red")
abline(c[1], c[2]/2, col="red")
差↓一点笑了 2024-09-11 23:42:00
diseasesev<-c(1.9,3.1,3.3,4.8,5.3,6.1,6.4,7.6,9.8,12.4)

# Predictor variable, (Centigrade)
temperature<-c(2,1,5,5,20,20,23,10,30,25)

## For convenience, the data may be formatted into a dataframe
severity <- as.data.frame(cbind(diseasesev,temperature))

## Fit a linear model for the data and summarize the output from function lm()
severity.lm <- lm(diseasesev~temperature,data=severity)

line1 <- severity.lm$coefficients * c(1,2)
line2 <- severity.lm$coefficients * c(1,.5)

df <- as.data.frame(severity.lm[[12]])
df2 <- adply(df,1,function(x) cbind(line1[2]*x[[2]]+line1[1], line2[2]*x[[2]]+line2[1]))

plot(
  df2[df2[,1] >= min(df2[,c(3,4)]) & df2[,1] <= max(df2[,c(3,4)]),c(2,1)],
  xlab="Temperature",
  ylab="% Disease Severity",
  pch=16,
  pty="s",
  xlim=c(0,30),
  ylim=c(0,30)
)
title(main="Graph of % Disease Severity vs Temperature")
par(new=TRUE) # don't start a new plot
abline(severity.lm, col="blue")
abline(line1, col="cyan")
abline(line2, col="cyan")
points(df2[df2[,1] < min(df2[,c(3,4)]) | df2[,1] > max(df2[,c(3,4)]),c(2,1)], pch = 16, col = 'red')

替代文字

diseasesev<-c(1.9,3.1,3.3,4.8,5.3,6.1,6.4,7.6,9.8,12.4)

# Predictor variable, (Centigrade)
temperature<-c(2,1,5,5,20,20,23,10,30,25)

## For convenience, the data may be formatted into a dataframe
severity <- as.data.frame(cbind(diseasesev,temperature))

## Fit a linear model for the data and summarize the output from function lm()
severity.lm <- lm(diseasesev~temperature,data=severity)

line1 <- severity.lm$coefficients * c(1,2)
line2 <- severity.lm$coefficients * c(1,.5)

df <- as.data.frame(severity.lm[[12]])
df2 <- adply(df,1,function(x) cbind(line1[2]*x[[2]]+line1[1], line2[2]*x[[2]]+line2[1]))

plot(
  df2[df2[,1] >= min(df2[,c(3,4)]) & df2[,1] <= max(df2[,c(3,4)]),c(2,1)],
  xlab="Temperature",
  ylab="% Disease Severity",
  pch=16,
  pty="s",
  xlim=c(0,30),
  ylim=c(0,30)
)
title(main="Graph of % Disease Severity vs Temperature")
par(new=TRUE) # don't start a new plot
abline(severity.lm, col="blue")
abline(line1, col="cyan")
abline(line2, col="cyan")
points(df2[df2[,1] < min(df2[,c(3,4)]) | df2[,1] > max(df2[,c(3,4)]),c(2,1)], pch = 16, col = 'red')

alt text

~没有更多了~
我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
原文