归并排序的空间要求

发布于 2024-09-04 20:36:08 字数 814 浏览 12 评论 0原文

我试图了解合并排序的空间要求,O(n)。
我发现时间要求基本上是级别数量(logn)*合并(n),这样就可以得到(n log n)。
现在,我们仍然在每个级别分配 n 个,在 2 个不同的数组中,左和右。
我确实明白这里的关键是当递归函数返回时空间被释放,但我没有看到它太明显。
此外,我找到的所有信息都只是说明所需的空间是 O(n) 但没有解释它。
有什么提示吗?

function merge_sort(m)
    if length(m) ≤ 1
        return m
    var list left, right, result
    var integer middle = length(m) / 2
    for each x in m up to middle
         add x to left
    for each x in m after middle
         add x to right
    left = merge_sort(left)
    right = merge_sort(right)
    result = merge(left, right)
    return result

编辑 好的,感谢 @Uri,这就是窍门
我一开始没看到的是,时间只是加法,而内存是加减法,所以时间最大是在执行结束时,但是内存最大是在递归栈的底部。

所以,如果我们继续添加 n + n/2 + n/4 + n/8....无论添加多少次,它都不会大于 2n,当我们到达递归堆栈时底部并开始向上,我们不保留前一个分支使用的内存,因此最大时,2n 将是使用的内存量,O(n)。

I'm trying to understand the space requirements for a Mergesort, O(n).
I see that time requirements are basically, amount of levels(logn) * merge(n) so that makes (n log n).
Now, we are still allocating n per level, in 2 different arrays, left and right.
I do understand that the key here is that when the recursive functions return the space gets deallocated, but I'm not seeing it too obvious.
Besides, all the info I find, just states space required is O(n) but don't explain it.
Any hint?

function merge_sort(m)
    if length(m) ≤ 1
        return m
    var list left, right, result
    var integer middle = length(m) / 2
    for each x in m up to middle
         add x to left
    for each x in m after middle
         add x to right
    left = merge_sort(left)
    right = merge_sort(right)
    result = merge(left, right)
    return result

EDIT
Ok, thanks to @Uri, this is the trick
What I failed to see at the very beginning is that time only adds, while memory adds and subtracts, so the maximum amount of time is at the end of execution, but the maximum amount of memory is at the bottom of the recursive stack.

So, if we keep adding n + n/2 + n/4 + n/8.... it doesn't matter how many times we add, it'll never be bigger than 2n, and when we reach the recursive stack bottom and start going up, we don't keep the memory used for the previous branch, so at max, 2n would be the amount of memory used, O(n).

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。

评论(3

败给现实 2024-09-11 20:36:08

有一些可以就地工作的合并排序版本。

然而,在大多数实现中,空间与数组的大小成线性关系。这意味着 n 代表第一层,n/2 代表第二层,n/4 代表第三层,等等。当你到达递归底部时,这个级数加起来约为 2n,这是线性的。

There are versions of merge-sort that can work in place.

However, in most implementations the space is linear in the size of the array. That means n for the first level, n/2 for the second, n/4 for the third, etc. By the time you are at the bottom of your recursion, this series adds up to about 2n, which is linear.

挽清梦 2024-09-11 20:36:08

这是我对代码空间复杂度的解释。基本上,当算法达到结果时,我们在内存上的表现如何。

1)您进行的每个递归调用都分配了恒定大小的堆栈帧以及不是“n”函数的任何变量。
我们称这个常数为“c”。因为,你要深入 lg(n) 层,结果是 c*lg(n) ,即 O(lg(n))。

2) 现在,当我们计算结果时,我们为 n/(2^k) 个元素分配空间,其中 k 是您所在的级别。

left = merge_sort(left)
right = merge_sort(right)

对于那些可能想知道我们如何得出 n/(2^k) 的人,请注意,首先我们在求解数组的前半部分时分配内存,即 left=merge_sort(left)。一旦这个递归树结束,我们最终会释放所有内存并回到起点,然后再求解右侧。因此,它是 n/(2^k)。
这将是 O(n)。

3)最后,合并过程也可能会分配额外的空间(如果使用链表,则可能不需要该空间),即 O(n)

最终答案 = O(lg(n)) + O(n) + O(n) 其中是 O(n)。

This is my explanation for the space complexity for your code. Basically, as the algorithm reaches results how are we doing on memory.

1) Every recursion call you make has a constant size of stack frame allocated as well as any variables that are not a function of "n".
Let's call this constanct "c". Since, you are going lg(n) levels deep the result is c*lg(n) which is O(lg(n)).

2) Now, as we compute the result, we allocate space for n/(2^k) elements, where k is the level you are at.

left = merge_sort(left)
right = merge_sort(right)

For folks who may be wondering how we came up with n/(2^k), notice that first we go about allocating memory when solving the first half of the array i.e left=merge_sort(left). Once, this recursion tree is ended, we end up deallocating all memory and come back to starting point before solving for the right side. Hence, its n/(2^k).
This is going to be O(n).

3) Finally, merge procedure may allocate extra space too (if using linked list this space may not be needed) which is O(n)

Final answer = O(lg(n)) + O(n) + O(n) which is O(n).

烦人精 2024-09-11 20:36:08

如果运行下面的 Java 代码,您可以看到分配的空间。当然这不包括函数调用堆栈空间。

import java.util.Arrays;

public class MergeSort {
    public static int[] sort(int[] nums) {

        System.out.println("Input array = " + Arrays.toString(nums));

        if (nums == null) return null;
        
        int n = nums.length;
        if (n == 0) return new int[] {};

        int[] space = new int[1];
        int[] result = sort(nums, 0 , n-1, space);

        System.out.println("Output array = " + Arrays.toString(result));

        return result;
    }

    private static int[] sort(int[] nums, int left, int right, int[] space) {
        
        if (left == right) {
            space[0]++;
            System.out.println("Allocating a single entry. space = " + space[0]);
            return new int[] {nums[left]};
        }

        int mid = (left + right)/2;

        int[] sortedLeft = sort(nums, left, mid, space);
        int[] sortedRight = sort(nums, mid + 1, right, space);

        int[] merged = merge(sortedLeft, sortedRight, space);
        
        space[0] = space[0]-sortedLeft.length - sortedRight.length;
        System.out.println("Relinquishing left and right subarrays. Space = " + space[0]);
        return merged;
    }

    private static int[] merge(int[] arr1, int[] arr2, int[] space) {
        int n = arr1.length;
        int m = arr2.length;

        int[] arr = new int[m+n];
        space[0] = space[0]+m+n;
        System.out.println("Allocating merged array. Space = " + space[0]);
        int i = 0, j = 0, k = 0;

        for (; i < n && j < m; k++) {
            arr[k] = arr1[i] <= arr2[j] ? arr1[i++] : arr2[j++];
        }

        while (i < n) {
            arr[k++] = arr1[i++];
        }

        while (j < m) {
            arr[k++] = arr2[j++];
        }

        return arr;
    }
}

在 8 尺寸的输入上,

public class App {
    public static void main(String[] args) throws Exception {
        MergeSort.sort(new int[] {1, 6, 3, 8, 1, 8, -2, 4});
    }
}

您应该看到最大空间为 16。

Input array = [1, 6, 3, 8, 1, 8, -2, 4]
Allocating a single entry. space = 1
Allocating a single entry. space = 2
Allocating merged array. Space = 4
Relinquishing left and right subarrays. Space = 2
Allocating a single entry. space = 3
Allocating a single entry. space = 4
Allocating merged array. Space = 6
Relinquishing left and right subarrays. Space = 4
Allocating merged array. Space = 8
Relinquishing left and right subarrays. Space = 4
Allocating a single entry. space = 5
Allocating a single entry. space = 6
Allocating merged array. Space = 8
Relinquishing left and right subarrays. Space = 6
Allocating a single entry. space = 7
Allocating a single entry. space = 8
Allocating merged array. Space = 10
Relinquishing left and right subarrays. Space = 8
Allocating merged array. Space = 12
Relinquishing left and right subarrays. Space = 8
Allocating merged array. Space = 16
Relinquishing left and right subarrays. Space = 8
Output array = [-2, 1, 1, 3, 4, 6, 8, 8]

If you run the below Java code, you can see the space allocated. OfCourse this does not include the function call stack space.

import java.util.Arrays;

public class MergeSort {
    public static int[] sort(int[] nums) {

        System.out.println("Input array = " + Arrays.toString(nums));

        if (nums == null) return null;
        
        int n = nums.length;
        if (n == 0) return new int[] {};

        int[] space = new int[1];
        int[] result = sort(nums, 0 , n-1, space);

        System.out.println("Output array = " + Arrays.toString(result));

        return result;
    }

    private static int[] sort(int[] nums, int left, int right, int[] space) {
        
        if (left == right) {
            space[0]++;
            System.out.println("Allocating a single entry. space = " + space[0]);
            return new int[] {nums[left]};
        }

        int mid = (left + right)/2;

        int[] sortedLeft = sort(nums, left, mid, space);
        int[] sortedRight = sort(nums, mid + 1, right, space);

        int[] merged = merge(sortedLeft, sortedRight, space);
        
        space[0] = space[0]-sortedLeft.length - sortedRight.length;
        System.out.println("Relinquishing left and right subarrays. Space = " + space[0]);
        return merged;
    }

    private static int[] merge(int[] arr1, int[] arr2, int[] space) {
        int n = arr1.length;
        int m = arr2.length;

        int[] arr = new int[m+n];
        space[0] = space[0]+m+n;
        System.out.println("Allocating merged array. Space = " + space[0]);
        int i = 0, j = 0, k = 0;

        for (; i < n && j < m; k++) {
            arr[k] = arr1[i] <= arr2[j] ? arr1[i++] : arr2[j++];
        }

        while (i < n) {
            arr[k++] = arr1[i++];
        }

        while (j < m) {
            arr[k++] = arr2[j++];
        }

        return arr;
    }
}

On a 8-size input,

public class App {
    public static void main(String[] args) throws Exception {
        MergeSort.sort(new int[] {1, 6, 3, 8, 1, 8, -2, 4});
    }
}

you should see a maximum space of 16.

Input array = [1, 6, 3, 8, 1, 8, -2, 4]
Allocating a single entry. space = 1
Allocating a single entry. space = 2
Allocating merged array. Space = 4
Relinquishing left and right subarrays. Space = 2
Allocating a single entry. space = 3
Allocating a single entry. space = 4
Allocating merged array. Space = 6
Relinquishing left and right subarrays. Space = 4
Allocating merged array. Space = 8
Relinquishing left and right subarrays. Space = 4
Allocating a single entry. space = 5
Allocating a single entry. space = 6
Allocating merged array. Space = 8
Relinquishing left and right subarrays. Space = 6
Allocating a single entry. space = 7
Allocating a single entry. space = 8
Allocating merged array. Space = 10
Relinquishing left and right subarrays. Space = 8
Allocating merged array. Space = 12
Relinquishing left and right subarrays. Space = 8
Allocating merged array. Space = 16
Relinquishing left and right subarrays. Space = 8
Output array = [-2, 1, 1, 3, 4, 6, 8, 8]
~没有更多了~
我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
原文