STLpriority_queue的效率

发布于 2024-09-04 09:37:12 字数 1251 浏览 10 评论 0原文

我有一个应用程序 (C++),我认为 STL priority_queue 可以很好地服务该应用程序。 文档说:

Priority_queue 是一个容器适配器,这意味着它是在某些底层容器类型之上实现的。默认情况下,基础类型是向量,但可以显式选择不同的类型。

优先级队列是一个标准概念,可以通过多种不同方式实现;此实现使用堆。

我之前假设 top()O(1),并且 push() 将是O(logn) (我首先选择 priority_queue 的两个原因) - 但文档既没有证实也没有否认这个假设。

更深入地挖掘,序列概念的文档说:

单元素插入和擦除的复杂性取决于序列。

priority_queue 使用vector(默认情况下)作为堆,其中:

...支持随机访问元素、末尾固定时间插入和删除元素、开头或中间线性时间插入和删除元素。

我推断,使用默认的 priority_queuetop()O(1)push() > 是O(n)

问题 1:这是否正确? (top() 访问是 O(1)push()O(n)?)

< strong>问题 2:如果我使用 set,我能否在 push() 上实现 O(logn) 效率(或multiset)而不是vector来实现priority_queue?这样做会产生什么后果?其他哪些操作会因此受到影响?

注意:我担心的是时间效率,而不是空间。

I have an application (C++) that I think would be well served by an STL priority_queue. The documentation says:

Priority_queue is a container adaptor, meaning that it is implemented on top of some underlying container type. By default that underlying type is vector, but a different type may be selected explicitly.

and

Priority queues are a standard concept, and can be implemented in many different ways; this implementation uses heaps.

I had previously assumed that top() is O(1), and that push() would be a O(logn) (the two reasons I chose the priority_queue in the first place) - but the documentation neither confirms nor denies this assumption.

Digging deeper, the docs for the Sequence concept say:

The complexities of single-element insert and erase are sequence dependent.

The priority_queue uses a vector (by default) as a heap, which:

... supports random access to elements, constant time insertion and removal of elements at the end, and linear time insertion and removal of elements at the beginning or in the middle.

I'm inferring that, using the default priority_queue, top() is O(1) and push() is O(n).

Question 1: Is this correct? (top() access is O(1) and push() is O(n)?)

Question 2: Would I be able to achieve O(logn) efficiency on push() if I used a set (or multiset) instead of a vector for the implementation of the priority_queue? What would the consequences be of doing this? What other operations would suffer as a consequence?

N.B.: I'm worried about time efficiency here, not space.

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。

评论(6

生活了然无味 2024-09-11 09:37:12

优先级队列适配器使用标准库堆算法来构建和访问队列 - 您应该在文档中查找这些算法的复杂性。

top() 操作显然是 O(1) 但大概你想在调用它之后 pop() 堆(根据 Josuttis) 是 O(2*log(N)) ,push() 是 O(log(N)) - 相同的来源。

来自 C++ 标准 25.6.3.1,push_heap :

复杂性:最多进行 log(最后 - 第一个)比较。

和 pop_heap:

复杂性:最多 2 * log(最后 - 第一个)比较。

The priority queue adaptor uses the standard library heap algorithms to build and access the queue - it's the complexity of those algorithms you should be looking up in the documentation.

The top() operation is obviously O(1) but presumably you want to pop() the heap after calling it which (according to Josuttis) is O(2*log(N)) and push() is O(log(N)) - same source.

And from the C++ Standard, 25.6.3.1, push_heap :

Complexity: At most log(last - first) comparisons.

and pop_heap:

Complexity: At most 2 * log(last - first) comparisons.

滥情哥ㄟ 2024-09-11 09:37:12

top() - O(1) - 因为它只返回元素@ front。

push() -

  • 插入向量 - 0(1) 分摊
  • push_into_heap - 最多 log(n) 次比较。 O(logn)

    所以push()的复杂度是——
    log(n)

top() - O(1) -- as it just returns the element @ front.

push() -

  • insert into vector - 0(1) amortized
  • push_into_heap - At most, log(n) comparisons. O(logn)

    so push() complexity is --
    log(n)

神经大条 2024-09-11 09:37:12

不,这是不正确的。 top() 的复杂度为 O(1),push() 的复杂度为 O(log n)。请阅读文档中的注释 2,了解该适配器不允许迭代向量。 Neil 关于 pop() 的说法是正确的,但这仍然允许在 O(log n) 时间内使用堆进行插入和删除操作。

No. This is not correct. top() is O(1) and push() is O(log n). Read note 2 in the documentation to see that this adapter does not allow iterating through the vector. Neil is correct about pop(), but still this allows working with the heap doing insertions and removals in O(log n) time.

彻夜缠绵 2024-09-11 09:37:12

如果底层数据结构是堆,top()将是常数时间,而push(编辑:和pop)将是对数的(就像你说的)。向量只是用来存储这些东西,如下所示:

HEAP:
          1
      2        3
     8 12 11 9

VECTOR (用于存储)

1 2 3 8 12 11 9

你可以将其视为位置 i 的子元素的元素是 (2i) 和 (2i+1)

他们使用向量是因为它顺序存储数据(这比离散的效率高得多,而且对缓存友好)

无论如何存储,都应该始终实现堆(尤其是制作 STD lib 的大神们),这样 pop 是恒定的,push 是对数的

If the underlying data structure is a heap, top() will be constant time, and push (EDIT: and pop) will be logarithmic (like you are saying). The vector is just used to store these things like this:

HEAP:
             1
        2         3
      8 12   11 9

VECTOR (used to store)

1 2 3 8 12 11 9

You can think of it as the element at position i's children is (2i) and (2i+1)

They use the vector because it stores the data sequentially (which is much more efficient and cache-friendly than discrete)

Regardless of how it is stored, a heap should always be implemented (especially by the gods who made the STD lib) so that pop is constant and push is logarithmic

若相惜即相离 2024-09-11 09:37:12

C++ STL的priority_queue底层数据结构是堆数据结构(堆是一种基于完全二叉树的非线性ADT,完全二叉树是通过向量(或数组)容器实现的。

ex  Input data : 5 9 3 10 12 4.

Heap (Considering Min heap) would be :

                   [3]
             [9]             [4]
         [10]    [12]     [5]


   NOW , we store this min heap in to vector,             
      [3][9][4][10][12][5].
      Using formula ,
      Parent : ceiling of n-1/2
      Left Child : 2n+1
      Right Child : 2n+2 .
  Hence ,
    Time Complexity for 
             Top = O(1) , get element from root node.
             POP()= O(logn) , During deletion of root node ,there  is      chance to violation of  heap order . hence restructure of heap order takes at most O(logn) time (an element might move down to height of tree).
            PUSH()= O(logn) , During insertion also , there might chance to violation of  heap order . hence restructure of heap order takes at most O(logn) time (an element might move up to root from leaf node).

C++ STL priority_queue underlying data structure is Heap data structure(Heap is a non linear ADT which based on complete binary tree and complete binary tree is implemented through vector(or Array) container.

ex  Input data : 5 9 3 10 12 4.

Heap (Considering Min heap) would be :

                   [3]
             [9]             [4]
         [10]    [12]     [5]


   NOW , we store this min heap in to vector,             
      [3][9][4][10][12][5].
      Using formula ,
      Parent : ceiling of n-1/2
      Left Child : 2n+1
      Right Child : 2n+2 .
  Hence ,
    Time Complexity for 
             Top = O(1) , get element from root node.
             POP()= O(logn) , During deletion of root node ,there  is      chance to violation of  heap order . hence restructure of heap order takes at most O(logn) time (an element might move down to height of tree).
            PUSH()= O(logn) , During insertion also , there might chance to violation of  heap order . hence restructure of heap order takes at most O(logn) time (an element might move up to root from leaf node).
怪我闹别瞎闹 2024-09-11 09:37:12

Q1:我没有查看标准,但据我所知,使用 vector (或 deque 顺便说一句),复杂度将是 O(1) 对于 top()O(log n) 对于 push()pop()。我曾经使用 O(1) push()top()std::priority_queue 与我自己的堆进行比较> 和 O(log n) pop() 并且它肯定没有 O(n) 慢。

Q2:set 不能用作 priority_queue 的底层容器(不是序列),但可以使用 set 来实现优先级队列 O( log n) push()pop()。但是,与 std::vector 实现相比,这可能不会优于 std::priority_queue

Q1: I didn't look in the standard, but AFAIK, using vector (or deque btw), the complexity would be O(1) for top(), O(log n) for push() and pop(). I once compared std::priority_queue with my own heap with O(1) push() and top() and O(log n) pop() and it certainly wasn't as slow as O(n).

Q2: set is not usable as underlying container for priority_queue (not a Sequence), but it would be possible to use set to implement a priority queue with O(log n) push() and pop(). However, this wouldn't probably outperform the std::priority_queue over std::vector implementation.

~没有更多了~
我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
原文