解决整数序列问题的通用算法是什么?
假设输入始终是相同数量的 N 个数字(例如 5),并假设整数实际上具有数学关系(没有数字“一”、“二”的长度、第 n 个月的天数等)。输出将是下一个整数和发现的规则,或者是无法检测到规则的消息。 我正在考虑以一二三的顺序建立一个模块,该模块试图通过对相邻数字、一远、两远等数字之间的和和/或差来查找算术序列规则,寻找模式,然后有一个专注于的模块通过以相同的方式进行乘法和/或除法来对几何序列进行检测,然后,如果有通用方法,则提供用于检测递归序列的模块。
谢谢!
Say the input will always be the same number N of numbers (e.g., 5) and assume the integers actually have a mathematical relation (no lengths of the numbers 'one', 'two', days in the nth month, etc.). The output would be either the next integer and the rule discovered or a message that no rule could be detected.
I was thinking to have in one-two-three order, a module that tries to find arithmetic sequence rules by doing sums and/or differences between numbers adjacent, one away, two away, etc. looking for patterns, then having a module focused on geometric sequences by multiplying and/or dividing in the same way, and then, if there is a general approach, a module for detecting recursive sequences.
Thanks!
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。
绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论
评论(2)
整数序列在线百科全书恰恰解决了这个问题:- )
The On-Line Encyclopedia of Integer Sequences solves precisely this problem :-)
给定任何数字序列,我们都可以得出一个“适合”的公式!
给定 a1, a2, ..., an
您需要做的就是找到一个 n-1 次多项式(使用多项式插值),使得
P(i) = ai
,就是这样,您就有了一个公式。多项式插值可以像求解矩阵方程 Ax = b 一样简单(其中 A 为 Vandermonde矩阵)。
查看: http://en.wikipedia.org/wiki/Polynomial_interpolation
这是其中之一我发现这些“猜下一个数字”问题有点愚蠢的原因(阅读:可悲的智商测试)。并非每个人都这么想。
Given any sequence of numbers, we can come up with a formula which 'fits'!
Given a1, a2, ..., an
All you need to do is find an n-1 degree polynomial (using Polynomial interpolation) so that
P(i) = ai
and that's it, you have a formula. Polynomial interpolation can be as easy as solving a matrix equation Ax = b (with A being a Vandermonde matrix).
Check out: http://en.wikipedia.org/wiki/Polynomial_interpolation
That is one of the reasons I find these 'guess the next number' problems a bit silly (read: pathetic IQ tests). Not everyone thinks the same way.