信息建模
- 我的项目中的传感器模块由一个旋转摄像头组成,它收集有关周围环境中移动物体的噪音信息。
- 该信息由移动物体的距离、角度和相对变化组成
- 。相机使得定期旋转相机以更新环境信息变得至关重要...
我一直在寻找算法/方法来对这些信息进行建模,以便能够猜测/预测/学习< /strong> 这些对象的运动属性。
我当前提出的想法是将每个对象的最后 n 个快照存储在队列中。我对移动物体的位置和速度进行加权平均,但我认为这是一个糟糕的方法......
你能说出一些适合这种情况的标题吗?
谢谢
- The sensor module in my project consists of a rotating camera, that collects noisy information about moving objects in the surrounding environment.
- The information consists of distance, angle and relative change of the moving objects..
- The limiting view range of the camera makes it essential to rotate the camera periodically to update environment information...
I was looking for algorithms / ways to model these information, in order to be able to guess / predict / learn motion properties of these object..
My current proposed idea is to store last n snapshots of each object in a queue. I take weighted average of positions and velocities of moving object, but I think it is a poor method...
Can you state some titles that suit this case?
Thanks
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。
绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论
评论(1)
卡尔曼{扩展、无味、... }过滤器和粒子过滤器 仅在阅读了卡尔曼滤波器之后。
卡尔曼滤波器使用高斯假设从噪声数据中学习并预测正确的数据,因此它可能对您有用。如果您需要非高斯方法,请查看粒子滤波器。
Kalman {Extended, unscented, ... } filters and particle filters only after reading about Kalman filters.
Kalman filters learn and predict the correct data from noisy data with a Gaussian assumption, so it may be of use to you. If you need non-Gaussian methods, look at the particle filter.