数组递归
我有一个我无法弄清楚的作业,任何指示都会非常感激,它是这样的:
有一系列灯泡表示为真/假数组,每个灯泡都有一个开关,通过单击对于任何灯泡,您都可以切换它以及 2 个相邻的灯泡(左侧 1 个,右侧 1 个;如果单击边缘上的开关灯泡 - 当然只有 1 个相邻的切换)。
需要完成的是一种方法,该方法接受一系列打开/关闭的灯泡的数组,以及代表单击一些开关后的第一个数组的另一种状态的另一个状态......! 因此必须使用递归来找出是否存在将数组 1 转换为数组 2 的开关点击组合。
该方法的签名如下:
public static boolean disco(boolean[] init, boolean[] target)
如果数组 init 可以转换为 ,则返回 true >目标,否则为 false。 方法必须是静态的并且不能使用循环 &任何其他静态和全局变量,仅限本地变量。
示例:
boolean[] init = {true, false, true, false, true, false};
boolean[] target = {false, true, false, true, false, true};
对于上述 2 个数组,disco(init, target) 将返回 true,因为切换第一个和第四个灯泡将产生目标状态(记住相邻灯泡也会被切换)。
I've got an assignment I can't figure out, any pointers will be much appreciated, it goes like so:
There's a series of light bulbs represented as an array of true/false, there's a switch for every light bulb, by clicking it for any light bulb, you toggle it as well as 2 adjacent ones (1 from left & another 1 from right; if clicked switch's bulb on edge -- only 1 adjacent toggled of course).
What is needed to accomplish is a method that accepts an array of a series of turned on/off light bulbs and another one representing another state of supposedly the 1st array after some switches have been clicked..!
So recursion must be used to find out whether there's a combination of switch clicks that will transform array 1 to array 2.
Here's the signature of the method:
public static boolean disco(boolean[] init, boolean[] target)
Will return true if array init can be transformed to target, false otherwise.
Method must be static and not use loops & any other static and global variables, only local.
Example:
boolean[] init = {true, false, true, false, true, false};
boolean[] target = {false, true, false, true, false, true};
For above 2 arrays, disco(init, target) will return true because toggling the 1st and 4th bulbs would yield the target state (remember adjacent bulbs being toggled as well).
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。
绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论
评论(4)
新版本
新新版本
我将其分为三种情况:
情况 1:长度 %3 = 0
通过更改第一个灯泡和第二个灯泡,您只能影响第三个灯泡的更改。
然后对 4 和 5 进行更改将使第 6 个成为唯一更改的。我们看到我们可以更换索引可被 3 整除的每个灯泡。
向后工作(从最后开始)我们可以做同样的事情,但这次它向我们展示了我们可以更换索引 (i+1) 可被 3 整除的灯泡。
结合两者,我们发现如果我们想改变索引 0,1 mod 3 是可以的。但要更改 2,我们只需更改相邻的 0,1 对,然后更改中间的一对即可。所以在所有情况下这些都是可以解决的。
情况 2:长度 %3 = 1
就像第一种情况一样,但我们可以影响 0,2 mod 3 的单个变化,从而压缩 1 mod 3 的情况。
情况 3:长度 %3 = 2
向前和向后工作只会产生情况 0 mod 3。剩下的唯一移动是对灯泡进行两次更改(因为我们可以忽略对位置 0 的任何更改)。更改 1 或 2 将反转两个 0 包围的位置,而更改 0 将交换 1,2 的相邻块中的奇偶校验,这些块之间有一个 0(如果绘制它会更容易)。但到目前为止我所展示的是,0 都可以被纠正,并且在任何相邻的 1,2 中,如果它们都是错误的,则可以修复它们,而无需更改任何其他内容。如果其中一个错误,则将更改传播到相邻的 1,2 对。如有必要,可以移动此更改。这意味着 1,2 位上的任何偶数个错误都可以被修复,但奇数个错误则不能。位置 0 处的所有错误都可以修复。
new version
new new version
I've broken it down to three cases:
Case 1: length %3 = 0
By changing the first bulb and the second bulb, you can affect a change on only the 3rd.
Then a change to 4 and 5 will make the 6th the only one changed. We see that we can change every bulb with index divisible by 3.
Working backwards (starting at the end) we can do the same but this time it shows us we can change bulbs with indices (i+1) divisible by 3.
Combining the two, we see that if we want to change an index 0,1 mod 3 we can. But then to change a 2, we simply have to change a neighboring 0,1 pair and then do a change on the middle one. So in all cases these are solvable.
Case 2: length %3 = 1
Just like the first case, but we can affect single changes at 0,2 mod 3, and thus squeeze the 1 mod 3 cases.
Case 3: length %3 = 2
Working forward and backwards only yields cases 0 mod 3. The only remaining moves we have make two changes to the bulbs (since we can ignore any changes to positions 0). Changing a 1 or 2 will reverse the position surrounded by two 0's whereas changing a 0 will swap the parity in adjacent blocks of 1,2 which have a 0 between them (it's easier if you draw it). But what I've shown so far is that the 0's can all be corrected and in any adjacent 1,2 you can fix both if they are wrong without changing anything else. If one is wrong then you propagate a change to an adjacent pair of 1,2. This change can be moved if necessary. What this means is that any even number of errors in 1,2 positions can be fixed, but an odd number cannot. All errors at position 0's can be fixed.
因此,用文字来说,这就是我的做法:
如果剩下的灯泡少于或等于 3 个,则很容易检查它们是否可以切换以确保其正确。
如果有超过三个灯泡,请执行以下操作:
检查第一个灯泡是否正确。如果是这样,则从第二个灯泡开始递归地处理子数组。
如果第一个灯泡不正确,请切换第二个灯泡(切换第一个灯泡不起作用,因为之前的灯泡会切换回来)。现在,第一个灯泡是正确的。继续从第二个灯泡开始的子阵列。
So here's in words how I would do it:
If there are just less than or equal 3 bulbs left, it's quite easy to check wether they can be switched so that it's correct.
If there are more than three bulbs, do the following:
Check, if the first bulb is correct. If so, go on recursively with the subarray beginning at the second bulb.
If the first bulb is not correct, switch the second bulb (switching the first bulb won't work because previous bulbs are switched back then). Now, the first bulb is correct. Go on with the subarray beginning at the second bulb.
提示:设 a1, a2, ..., ak, ..., an 为输入,b1, b2, ..., bk, ..., bn 为所需输出。
您可以递归测试左侧和右侧,然后合并结果。棘手的部分是合并结果。
从左侧开始。
在左侧进行两次测试后,您可以在右侧执行类似的测试。您将能够组合测试的值,因为您将知道第 k 个开关是否被切换。
Hint: Let a1, a2, ..., ak, ..., an be the input and b1, b2, ..., bk, ..., bn be the desired output.
You can recursively test the left and right sides and then combine the result. The tricky part is combining the result.
Start with the left side.
After two tests on the left side, you can perform similar tests on the right side. You will be able to combine the values of the test, because you will know whether the kth switch was toggled or not.
感谢大家的帮助,这就是我的想法:
我觉得我在这里使用的递归很少,如果正确使用递归,可能会干净得多。 有什么想法吗?
我说的是 switchBulb 函数,它可以用更复杂的递归逻辑进行交换,还是我错了?
例如,如果您只是一个接一个地迭代灯泡并与目标数组进行比较,则无需对所有灯泡组合都正确(请参见示例),那么如何通过递归来模拟随机灯泡切换呢?或者有一个模式吗?一定有,如果没有,它怎么知道什么时候停止?
我想我已经找到了解决方案,如果有人感兴趣的话稍后会发布......
Thanks all for your help, this is what I came up with:
I feel my use of recursion here is minimal, could be much cleaner if recursion was used properly. Any thoughts?
I'm talking about the switchBulb function, it could be swapped with a little bit more sophisticated recursion logic, or am I wrong?
As in, if you simply iterate over the bulbs one by one and compare to the target array, you won't necessary get it right for ALL combinations of bulbs (see example), so how do you mimic random bulb switching with recursion? Or is there a pattern? There must be, if not, how would it know when to stop?
I think I got the solution, will post later if anyone's interested...