所有最小生成树的实现

发布于 2024-09-03 03:02:11 字数 368 浏览 18 评论 0原文

我一直在寻找一个实现(我正在使用 networkx 库。)它将找到所有最小跨度无向加权图的树(MST)。

我只能找到 Kruskal 算法和 Prim 算法的实现,这两个算法都只会返回一个 MST。

我看过解决这个问题的论文(例如 代表所有最小生成树都具有计数和生成的应用),但在尝试思考如何将其转换为代码时,我的头脑往往会以某种方式爆炸。

事实上,我还没有找到任何语言的实现!

I've been looking for an implementation (I'm using networkx library.) that will find all the minimum spanning trees (MST) of an undirected weighted graph.

I can only find implementations for Kruskal's Algorithm and Prim's Algorithm both of which will only return a single MST.

I've seen papers that address this problem (such as Representing all minimum spanning trees with applications to counting and generation) but my head tends to explode someway through trying to think how to translate it to code.

In fact i've not been able to find an implementation in any language!

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。

评论(4

七禾 2024-09-10 03:02:11

我不知道这是否是解决方案,但它是解决方案(我想说,这是暴力破解的图形版本):

  1. 找到图形的MST使用 kruskal 或 prim 算法。这应该是 O(E log V)。
  2. 生成所有生成树。这可以在 O(Elog(V) + V + n) 中完成,其中 n = 生成树的数量,据我从 2 分钟的谷歌了解,可能可以改进。
  3. 通过树的权重等于 MST 的权重来过滤步骤 #2 中生成的列表。对于 n 作为步骤 #2 中生成的树的数量,这应该是 O(n)。

注意:请懒惰地执行此操作!生成所有可能的树,然后过滤结果将占用 O(V^2) 内存,并且多项式空间要求是邪恶的 - 生成一棵树,检查它的权重,如果它是 MST,则将其添加到结果列表中,如果不是 - 丢弃它.
总体时间复杂度:对于具有 n 个生成树的 G(V,E),O(Elog(V) + V + n)

I don't know if this is the solution, but it's a solution (it's the graph version of a brute force, I would say):

  1. Find the MST of the graph using kruskal's or prim's algorithm. This should be O(E log V).
  2. Generate all spanning trees. This can be done in O(Elog(V) + V + n) for n = number of spanning trees, as I understand from 2 minutes's worth of google, can possibly be improved.
  3. Filter the list generated in step #2 by the tree's weight being equal to the MST's weight. This should be O(n) for n as the number of trees generated in step #2.

Note: Do this lazily! Generating all possible trees and then filtering the results will take O(V^2) memory, and polynomial space requirements are evil - Generate a tree, examine it's weight, if it's an MST add it to a result list, if not - discard it.
Overall time complexity: O(Elog(V) + V + n) for G(V,E) with n spanning trees

帅哥哥的热头脑 2024-09-10 03:02:11

Ronald Rivest 在 Python 中有一个很好的实现,mst.py

Ronald Rivest has a nice implementation in Python, mst.py

〃安静 2024-09-10 03:02:11

您可以在 Sorensen 和 Janssens (2005) 的著作中找到想法。

这个想法是按升序生成 ST,一旦获得较大的 ST 值就停止枚举。

You can find an idea in the work of Sorensen and Janssens (2005).

The idea is to generate the STs in the increasing order, and as soon as you get the bigger value of ST stop the enumeration.

猫性小仙女 2024-09-10 03:02:11

这是一个简短的 Python 实现,基本上是 Kruskal 的递归变体。使用找到的第一个 MST 的权重来限制此后搜索空间的大小。绝对仍然是指数复杂度,但比生成每个生成树更好。还包括一些测试代码。

[注意:这只是我自己的实验,目的是为了好玩,并可能从其他人那里获得对问题的进一步思考的灵感,并不是试图具体实施此处提供的其他答案中建议的任何解决方案]

# Disjoint set find (and collapse) 
def find(nd, djset):
    uv = nd
    while djset[uv] >= 0: uv = djset[uv]
    if djset[nd] >= 0: djset[nd] = uv
    return uv

# Disjoint set union (does not modify djset)
def union(nd1, nd2, djset):
    unionset = djset.copy()
    if unionset[nd2] < unionset[nd1]:
        nd1, nd2 = nd2, nd1

    unionset[nd1] += unionset[nd2]
    unionset[nd2] = nd1
    return unionset

# Bitmask convenience methods; uses bitmasks
# internally to represent MST edge combinations
def setbit(j, mask): return mask | (1 << j)
def isbitset(j, mask): return (mask >> j) & 1
def masktoedges(mask, sedges):
    return [sedges[i] for i in range(len(sedges)) 
            if isbitset(i, mask)]

# Upper-bound count of viable MST edge combination, i.e.
# count of edge subsequences of length: NEDGES, w/sum: WEIGHT
def count_subsequences(sedges, weight, nedges):
#{
    def count(i, target, length, cache):
        tkey = (i, target, length)
        if tkey in cache: return cache[tkey]
        if i == len(sedges) or target < sedges[i][2]: return 0
            
        cache[tkey] = (count(i+1, target, length, cache) +
            count(i+1, target - sedges[i][2], length - 1, cache) + 
            (1 if sedges[i][2] == target and length == 1 else 0))
        
        return cache[tkey]
    
    return count(0, weight, nedges, {})
#}

# Arg: n is number of nodes in graph [0, n-1]
# Arg: sedges is list of graph edges sorted by weight
# Return: list of MSTs, where each MST is a list of edges
def find_all_msts(n, sedges):
#{
    # Recursive variant of kruskal to find all MSTs
    def buildmsts(i, weight, mask, nedges, djset):
    #{
        nonlocal maxweight, msts
        if nedges == (n-1):
            msts.append(mask)
            if maxweight == float('inf'):
                print(f"MST weight: {weight}, MST edges: {n-1}, Total graph edges: {len(sedges)}")
                print(f"Upper bound numb viable MST edge combinations: {count_subsequences(sedges, weight, n-1)}\n")
                maxweight = weight
                
            return
        
        if i < len(sedges):
        #{
            u,v,wt = sedges[i]
            if weight + wt*((n-1) - nedges) <= maxweight:
            #{
                # Left recursive branch - include edge if valid
                nd1, nd2 = find(u, djset), find(v, djset)
                if nd1 != nd2: buildmsts(i+1, weight + wt,
                    setbit(i, mask), nedges+1, union(nd1, nd2, djset))
            
                # Right recursive branch - always skips edge
                buildmsts(i+1, weight, mask, nedges, djset)
            #}
        #}
    #}
        
    maxweight, msts = float('inf'), []
    djset = {i: -1 for i in range(n)}    
    buildmsts(0, 0, 0, 0, djset)    
    return [masktoedges(mask, sedges) for mask in msts]
#}

import time, numpy

def run_test_case(low=10, high=21):
    rng = numpy.random.default_rng()
    n = rng.integers(low, high)
    nedges = rng.integers(n-1, n*(n-1)//2)

    edges = set()
    while len(edges) < nedges: 
        u,v = sorted(rng.choice(range(n), size=2, replace=False))
        edges.add((u,v))

    weights = sorted(rng.integers(1, 2*n, size=nedges))
    sedges = [[u,v,wt] for (u,v), wt in zip(edges, weights)]
    print(f"Numb nodes: {n}\nSorted edges: {sedges}\n")
    
    for i, mst in enumerate(find_all_msts(n, sedges)):
        if i == 0: print("MSTs:")
        print((i+1), ":", mst)

if __name__ == "__main__":
    initial = time.time()
    run_test_case(20, 35)
    print(f"\nRun time: {time.time() - initial}s")

Here's a short python implementation, basically a recursive variation of Kruskal's. Uses weight of the the first MST found to limit the size of the search space thereafter. Definitely still exponential complexity but better than generating every spanning tree. Some test code is also included.

[Note: this was just my own experimentation for fun and possible inspiration of further thoughts on the problem from others, it's not an attempt to specifically implement any of the solutions suggested in other supplied answers here]

# Disjoint set find (and collapse) 
def find(nd, djset):
    uv = nd
    while djset[uv] >= 0: uv = djset[uv]
    if djset[nd] >= 0: djset[nd] = uv
    return uv

# Disjoint set union (does not modify djset)
def union(nd1, nd2, djset):
    unionset = djset.copy()
    if unionset[nd2] < unionset[nd1]:
        nd1, nd2 = nd2, nd1

    unionset[nd1] += unionset[nd2]
    unionset[nd2] = nd1
    return unionset

# Bitmask convenience methods; uses bitmasks
# internally to represent MST edge combinations
def setbit(j, mask): return mask | (1 << j)
def isbitset(j, mask): return (mask >> j) & 1
def masktoedges(mask, sedges):
    return [sedges[i] for i in range(len(sedges)) 
            if isbitset(i, mask)]

# Upper-bound count of viable MST edge combination, i.e.
# count of edge subsequences of length: NEDGES, w/sum: WEIGHT
def count_subsequences(sedges, weight, nedges):
#{
    def count(i, target, length, cache):
        tkey = (i, target, length)
        if tkey in cache: return cache[tkey]
        if i == len(sedges) or target < sedges[i][2]: return 0
            
        cache[tkey] = (count(i+1, target, length, cache) +
            count(i+1, target - sedges[i][2], length - 1, cache) + 
            (1 if sedges[i][2] == target and length == 1 else 0))
        
        return cache[tkey]
    
    return count(0, weight, nedges, {})
#}

# Arg: n is number of nodes in graph [0, n-1]
# Arg: sedges is list of graph edges sorted by weight
# Return: list of MSTs, where each MST is a list of edges
def find_all_msts(n, sedges):
#{
    # Recursive variant of kruskal to find all MSTs
    def buildmsts(i, weight, mask, nedges, djset):
    #{
        nonlocal maxweight, msts
        if nedges == (n-1):
            msts.append(mask)
            if maxweight == float('inf'):
                print(f"MST weight: {weight}, MST edges: {n-1}, Total graph edges: {len(sedges)}")
                print(f"Upper bound numb viable MST edge combinations: {count_subsequences(sedges, weight, n-1)}\n")
                maxweight = weight
                
            return
        
        if i < len(sedges):
        #{
            u,v,wt = sedges[i]
            if weight + wt*((n-1) - nedges) <= maxweight:
            #{
                # Left recursive branch - include edge if valid
                nd1, nd2 = find(u, djset), find(v, djset)
                if nd1 != nd2: buildmsts(i+1, weight + wt,
                    setbit(i, mask), nedges+1, union(nd1, nd2, djset))
            
                # Right recursive branch - always skips edge
                buildmsts(i+1, weight, mask, nedges, djset)
            #}
        #}
    #}
        
    maxweight, msts = float('inf'), []
    djset = {i: -1 for i in range(n)}    
    buildmsts(0, 0, 0, 0, djset)    
    return [masktoedges(mask, sedges) for mask in msts]
#}

import time, numpy

def run_test_case(low=10, high=21):
    rng = numpy.random.default_rng()
    n = rng.integers(low, high)
    nedges = rng.integers(n-1, n*(n-1)//2)

    edges = set()
    while len(edges) < nedges: 
        u,v = sorted(rng.choice(range(n), size=2, replace=False))
        edges.add((u,v))

    weights = sorted(rng.integers(1, 2*n, size=nedges))
    sedges = [[u,v,wt] for (u,v), wt in zip(edges, weights)]
    print(f"Numb nodes: {n}\nSorted edges: {sedges}\n")
    
    for i, mst in enumerate(find_all_msts(n, sedges)):
        if i == 0: print("MSTs:")
        print((i+1), ":", mst)

if __name__ == "__main__":
    initial = time.time()
    run_test_case(20, 35)
    print(f"\nRun time: {time.time() - initial}s")
~没有更多了~
我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
原文