解释这句话的最佳 Dijkstra 论文?
今天早些时候,我正在阅读“谦虚的程序员”,然后跑了在此选择报价中:
因此,暂时甚至可能永远,第二类规则将自身视为程序员所需的纪律要素。我心中的一些规则是如此清晰,以至于可以教授它们,并且永远不需要争论特定程序是否违反它们。例如,如果没有提供终止证明,也没有声明其不变性不会因执行可重复语句而被破坏的关系,则不应写下循环。
我正在寻找 Dijkstra 的 1300 多篇著作中哪一篇最能详细描述他上面描述的规则。
I was enjoying "The Humble Programmer" earlier today and ran across this choice quote:
Therefore, for the time being and perhaps forever, the rules of the second kind present themselves as elements of discipline required from the programmer. Some of the rules I have in mind are so clear that they can be taught and that there never needs to be an argument as to whether a given program violates them or not. Examples are the requirements that no loop should be written down without providing a proof for termination nor without stating the relation whose invariance will not be destroyed by the execution of the repeatable statement.
I'm looking for which of Dijkstra's 1300+ writings best describe in further detail rules such as he was describing above.
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。
绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论
评论(1)
第 5 页至第 18 页:http://userweb.cs.utexas.edu/用户/EWD/ewd02xx/EWD249.PDF
中。第 3 页到最后:http://userweb.cs.utexas.edu/用户/EWD/ewd04xx/EWD473.PDF
第 5 页结束至结束:http://userweb.cs.utexas.edu /users/EWD/ewd06xx/EWD641.PDF
全部:http://userweb.cs.utexas.edu/users /EWD/transcriptions/EWD02xx/EWD261.html (荷兰语,translation=below)
注意:Dijkstra 从 0 开始编号。给定页码从 1 开始, PDF 页码,而不是书面页码。
我对 EWD261 的英文翻译:
Page 5 through 18: http://userweb.cs.utexas.edu/users/EWD/ewd02xx/EWD249.PDF
Mid. page 3 through end: http://userweb.cs.utexas.edu/users/EWD/ewd04xx/EWD473.PDF
End page 5 through end: http://userweb.cs.utexas.edu/users/EWD/ewd06xx/EWD641.PDF
All: http://userweb.cs.utexas.edu/users/EWD/transcriptions/EWD02xx/EWD261.html (Dutch, translation=below)
Note: Dijkstra numbers his pages starting at 0. Given page numbers are starting at 1, the PDF page number, and not the written page numbers.
My translation of EWD261 in English: