重复 data.frame 的每一行一列中指定的次数

发布于 2024-09-02 15:30:53 字数 436 浏览 11 评论 0原文

df <- data.frame(var1 = c('a', 'b', 'c'), var2 = c('d', 'e', 'f'),
                 freq = 1:3)

扩展上面 data.frame 的前两列的每行,以便每行重复“freq”列中指定的次数,最简单的方法是什么?

换句话说,从这个:

df
  var1 var2 freq
1    a    d    1
2    b    e    2
3    c    f    3

到这个:

df.expanded
  var1 var2
1    a    d
2    b    e
3    b    e
4    c    f
5    c    f
6    c    f
df <- data.frame(var1 = c('a', 'b', 'c'), var2 = c('d', 'e', 'f'),
                 freq = 1:3)

What is the simplest way to expand each row the first two columns of the data.frame above, so that each row is repeated the number of times specified in the column 'freq'?

In other words, go from this:

df
  var1 var2 freq
1    a    d    1
2    b    e    2
3    c    f    3

To this:

df.expanded
  var1 var2
1    a    d
2    b    e
3    b    e
4    c    f
5    c    f
6    c    f

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。

评论(10

当梦初醒 2024-09-09 15:30:53

这是一种解决方案:

df.expanded <- df[rep(row.names(df), df$freq), 1:2]

结果:

    var1 var2
1      a    d
2      b    e
2.1    b    e
3      c    f
3.1    c    f
3.2    c    f

Here's one solution:

df.expanded <- df[rep(row.names(df), df$freq), 1:2]

Result:

    var1 var2
1      a    d
2      b    e
2.1    b    e
3      c    f
3.1    c    f
3.2    c    f
缱绻入梦 2024-09-09 15:30:53

老问题,tidyverse 中的新动词:

library(tidyr) # version >= 0.8.0
df <- data.frame(var1=c('a', 'b', 'c'), var2=c('d', 'e', 'f'), freq=1:3)
df %>% 
  uncount(freq)

    var1 var2
1      a    d
2      b    e
2.1    b    e
3      c    f
3.1    c    f
3.2    c    f

old question, new verb in tidyverse:

library(tidyr) # version >= 0.8.0
df <- data.frame(var1=c('a', 'b', 'c'), var2=c('d', 'e', 'f'), freq=1:3)
df %>% 
  uncount(freq)

    var1 var2
1      a    d
2      b    e
2.1    b    e
3      c    f
3.1    c    f
3.2    c    f
愛上了 2024-09-09 15:30:53

使用 splitstackshape 包中的 expandRows()

library(splitstackshape)
expandRows(df, "freq")

语法简单,速度非常快,适用于 data.framedata.table.

结果:

    var1 var2
1      a    d
2      b    e
2.1    b    e
3      c    f
3.1    c    f
3.2    c    f

Use expandRows() from the splitstackshape package:

library(splitstackshape)
expandRows(df, "freq")

Simple syntax, very fast, works on data.frame or data.table.

Result:

    var1 var2
1      a    d
2      b    e
2.1    b    e
3      c    f
3.1    c    f
3.2    c    f
凝望流年 2024-09-09 15:30:53

@neilfws 的解决方案非常适合 data.frame,但不适用于 data.table,因为它们缺少 row.names 属性。这种方法对两者都适用:

df.expanded <- df[rep(seq(nrow(df)), df$freq), 1:2]

data.table 的代码更加简洁:

# convert to data.table by reference
setDT(df)
df.expanded <- df[rep(seq(.N), freq), !"freq"]

@neilfws's solution works great for data.frames, but not for data.tables since they lack the row.names property. This approach works for both:

df.expanded <- df[rep(seq(nrow(df)), df$freq), 1:2]

The code for data.table is a tad cleaner:

# convert to data.table by reference
setDT(df)
df.expanded <- df[rep(seq(.N), freq), !"freq"]
浅忆 2024-09-09 15:30:53

另一种带有 slice 的 dplyr 替代方案,其中我们重复每个行号 freq

library(dplyr)

df %>%  
  slice(rep(seq_len(n()), freq)) %>% 
  select(-freq)

#  var1 var2
#1    a    d
#2    b    e
#3    b    e
#4    c    f
#5    c    f
#6    c    f

seq_len(n()) 部分可以是替换为以下任何一项。

df %>% slice(rep(1:nrow(df), freq)) %>% select(-freq)
#Or
df %>% slice(rep(row_number(), freq)) %>% select(-freq)
#Or
df %>% slice(rep(seq_len(nrow(.)), freq)) %>% select(-freq)

Another dplyr alternative with slice where we repeat each row number freq times

library(dplyr)

df %>%  
  slice(rep(seq_len(n()), freq)) %>% 
  select(-freq)

#  var1 var2
#1    a    d
#2    b    e
#3    b    e
#4    c    f
#5    c    f
#6    c    f

seq_len(n()) part can be replaced with any of the following.

df %>% slice(rep(1:nrow(df), freq)) %>% select(-freq)
#Or
df %>% slice(rep(row_number(), freq)) %>% select(-freq)
#Or
df %>% slice(rep(seq_len(nrow(.)), freq)) %>% select(-freq)
方觉久 2024-09-09 15:30:53

我知道情况并非如此,但如果您需要保留原始的 freq 列,您可以将另一种 tidyverse 方法与 rep 一起使用:

library(purrr)

df <- data.frame(var1 = c('a', 'b', 'c'), var2 = c('d', 'e', 'f'), freq = 1:3)

df %>% 
  map_df(., rep, .$freq)
#> # A tibble: 6 x 3
#>   var1  var2   freq
#>   <fct> <fct> <int>
#> 1 a     d         1
#> 2 b     e         2
#> 3 b     e         2
#> 4 c     f         3
#> 5 c     f         3
#> 6 c     f         3

创建于 2019-12 -21 由 reprex 包 (v0.3.0)

I know this is not the case but if you need to keep the original freq column, you can use another tidyverse approach together with rep:

library(purrr)

df <- data.frame(var1 = c('a', 'b', 'c'), var2 = c('d', 'e', 'f'), freq = 1:3)

df %>% 
  map_df(., rep, .$freq)
#> # A tibble: 6 x 3
#>   var1  var2   freq
#>   <fct> <fct> <int>
#> 1 a     d         1
#> 2 b     e         2
#> 3 b     e         2
#> 4 c     f         3
#> 5 c     f         3
#> 6 c     f         3

Created on 2019-12-21 by the reprex package (v0.3.0)

带刺的爱情 2024-09-09 15:30:53

如果您必须在非常大的 data.frames 上执行此操作,我建议将其转换为 data.table 并使用以下内容,它应该运行得更快:

library(data.table)
dt <- data.table(df)
dt.expanded <- dt[ ,list(freq=rep(1,freq)),by=c("var1","var2")]
dt.expanded[ ,freq := NULL]
dt.expanded

看看这个解决方案有多快:

df <- data.frame(var1=1:2e3, var2=1:2e3, freq=1:2e3)
system.time(df.exp <- df[rep(row.names(df), df$freq), 1:2])
##    user  system elapsed 
##    4.57    0.00    4.56
dt <- data.table(df)
system.time(dt.expanded <- dt[ ,list(freq=rep(1,freq)),by=c("var1","var2")])
##    user  system elapsed 
##    0.05    0.01    0.06

In case you have to do this operation on very large data.frames I would recommend converting it into a data.table and use the following, which should run much faster:

library(data.table)
dt <- data.table(df)
dt.expanded <- dt[ ,list(freq=rep(1,freq)),by=c("var1","var2")]
dt.expanded[ ,freq := NULL]
dt.expanded

See how much faster this solution is:

df <- data.frame(var1=1:2e3, var2=1:2e3, freq=1:2e3)
system.time(df.exp <- df[rep(row.names(df), df$freq), 1:2])
##    user  system elapsed 
##    4.57    0.00    4.56
dt <- data.table(df)
system.time(dt.expanded <- dt[ ,list(freq=rep(1,freq)),by=c("var1","var2")])
##    user  system elapsed 
##    0.05    0.01    0.06
山色无中 2024-09-09 15:30:53

另一种可能性是使用 tidyr::expand

library(dplyr)
library(tidyr)

df %>% group_by_at(vars(-freq)) %>% expand(temp = 1:freq) %>% select(-temp)
#> # A tibble: 6 x 2
#> # Groups:   var1, var2 [3]
#>   var1  var2 
#>   <fct> <fct>
#> 1 a     d    
#> 2 b     e    
#> 3 b     e    
#> 4 c     f    
#> 5 c     f    
#> 6 c     f

vonjd 的答案的单行版本

library(data.table)

setDT(df)[ ,list(freq=rep(1,freq)),by=c("var1","var2")][ ,freq := NULL][]
#>    var1 var2
#> 1:    a    d
#> 2:    b    e
#> 3:    b    e
#> 4:    c    f
#> 5:    c    f
#> 6:    c    f

reprex 包 (v0.2.1) 创建于 2019 年 5 月 21 日< /sup>

Another possibility is using tidyr::expand:

library(dplyr)
library(tidyr)

df %>% group_by_at(vars(-freq)) %>% expand(temp = 1:freq) %>% select(-temp)
#> # A tibble: 6 x 2
#> # Groups:   var1, var2 [3]
#>   var1  var2 
#>   <fct> <fct>
#> 1 a     d    
#> 2 b     e    
#> 3 b     e    
#> 4 c     f    
#> 5 c     f    
#> 6 c     f

One-liner version of vonjd's answer:

library(data.table)

setDT(df)[ ,list(freq=rep(1,freq)),by=c("var1","var2")][ ,freq := NULL][]
#>    var1 var2
#> 1:    a    d
#> 2:    b    e
#> 3:    b    e
#> 4:    c    f
#> 5:    c    f
#> 6:    c    f

Created on 2019-05-21 by the reprex package (v0.2.1)

看轻我的陪伴 2024-09-09 15:30:53

我正在为这个精彩答案的精彩线索提供又一个补充!使用 tidyr 包(包含在 tidyverse 中)获得单行解决方案:

df %>% tidyr::uncount(weights = freq)

I am providing one more addition to this wonderful thread of nice answers! Use the tidyr package (included in tidyverse) for a one-liner solution:

df %>% tidyr::uncount(weights = freq)
单身狗的梦 2024-09-09 15:30:53

实际上。使用向量和索引的方法。我们也可以达到同样的结果,并且更容易理解:

rawdata <- data.frame('time' = 1:3, 
           'x1' = 4:6,
           'x2' = 7:9,
           'x3' = 10:12)

rawdata[rep(1, time=2), ] %>% remove_rownames()
#  time x1 x2 x3
# 1    1  4  7 10
# 2    1  4  7 10


in fact. use the methods of vector and index. we can also achieve the same result, and more easier to understand:

rawdata <- data.frame('time' = 1:3, 
           'x1' = 4:6,
           'x2' = 7:9,
           'x3' = 10:12)

rawdata[rep(1, time=2), ] %>% remove_rownames()
#  time x1 x2 x3
# 1    1  4  7 10
# 2    1  4  7 10


~没有更多了~
我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
原文