Oracle SELECT 查询:配对日期时折叠空值

发布于 2024-09-02 00:26:36 字数 1335 浏览 13 评论 0原文

我有以下 Oracle 查询:

SELECT id,
       DECODE(state, 'Open', state_in, NULL) AS open_in,
       DECODE(state, 'Not Open', state_in, NULL) AS open_out,
FROM (
       SELECT id,
              CASE WHEN state = 'Open'
                   THEN 'Open'
                   ELSE 'Not Open'
              END AS state,
              TRUNC(state_time) AS state_in
       FROM ...
     )

这给了我如下所示的数据:

id  open_in              open_out
1   2009-03-02 00:00:00
1                        2009-03-05 00:00:00
1   2009-03-11 00:00:00
1                        2009-03-26 00:00:00
1                        2009-03-24 00:00:00
1                        2009-04-13 00:00:00

我想要的是这样的数据:

id  open_in              open_out
1   2009-03-02 00:00:00  2009-03-05 00:00:00
1   2009-03-11 00:00:00  2009-03-24 00:00:00

也就是说,保留 id/open_in 的所有唯一对并将 open_in 之后最早的 open_out 与它们配对。给定 id 可以有任意数量的唯一 open_in 值,也可以有任意数量的唯一 open_out 值。唯一的 id/open_in 可能没有匹配的 open_out 值,在这种情况下,open_out 应该该行的值为 null

我觉得一些分析函数,也许LAGLEAD,在这里会很有用。也许我需要将 MINPARTITION 一起使用。

I have the following Oracle query:

SELECT id,
       DECODE(state, 'Open', state_in, NULL) AS open_in,
       DECODE(state, 'Not Open', state_in, NULL) AS open_out,
FROM (
       SELECT id,
              CASE WHEN state = 'Open'
                   THEN 'Open'
                   ELSE 'Not Open'
              END AS state,
              TRUNC(state_time) AS state_in
       FROM ...
     )

This gives me data like the following:

id  open_in              open_out
1   2009-03-02 00:00:00
1                        2009-03-05 00:00:00
1   2009-03-11 00:00:00
1                        2009-03-26 00:00:00
1                        2009-03-24 00:00:00
1                        2009-04-13 00:00:00

What I would like is data like this:

id  open_in              open_out
1   2009-03-02 00:00:00  2009-03-05 00:00:00
1   2009-03-11 00:00:00  2009-03-24 00:00:00

That is, keep all the unique pairs of id/open_in and pair with them the earliest open_out that follows open_in. There can be any number of unique open_in values for a given id, and any number of unique open_out values. It is possible that a unique id/open_in will not have a matching open_out value, in which case open_out should be null for that row.

I feel like some analytic function, maybe LAG or LEAD, would be useful here. Perhaps I need MIN used with a PARTITION.

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。

评论(2

生死何惧 2024-09-09 00:26:36

可以做得更简单一点。首先让我们创建一个示例表:

SQL> create table mytable (id,state,state_time)
  2  as
  3  select 1, 'Open', date '2009-03-02' from dual union all
  4  select 1, 'Closed', date '2009-03-05' from dual union all
  5  select 1, 'Open', date '2009-03-11' from dual union all
  6  select 1, 'Shut down', date '2009-03-26' from dual union all
  7  select 1, 'Wiped out', date '2009-03-24' from dual union all
  8  select 1, 'Demolished', date '2009-04-13' from dual
  9  /

Table created.

数据等于 select 语句的输出:

SQL> SELECT id,
  2         DECODE(state, 'Open', state_in, NULL) AS open_in,
  3         DECODE(state, 'Not Open', state_in, NULL) AS open_out
  4  FROM (
  5         SELECT id,
  6                CASE WHEN state = 'Open'
  7                     THEN 'Open'
  8                     ELSE 'Not Open'
  9                END AS state,
 10                TRUNC(state_time) AS state_in
 11         FROM mytable
 12       )
 13  /

        ID OPEN_IN             OPEN_OUT
---------- ------------------- -------------------
         1 02-03-2009 00:00:00
         1                     05-03-2009 00:00:00
         1 11-03-2009 00:00:00
         1                     26-03-2009 00:00:00
         1                     24-03-2009 00:00:00
         1                     13-04-2009 00:00:00

6 rows selected.

这是稍微简单一点的查询:

SQL> select id
  2       , min(case when state = 'Open' then state_time end)  open_in
  3       , min(case when state != 'Open' then state_time end) open_out
  4    from ( select id
  5                , state
  6                , state_time
  7                , max(x) over (partition by id order by state_time) grp
  8             from ( select id
  9                         , state
 10                         , state_time
 11                         , case state
 12                           when 'Open' then
 13                             row_number() over (partition by id order by state_time)
 14                           end x
 15                      from mytable
 16                  )
 17         )
 18   group by id
 19       , grp
 20   order by id
 21       , open_in
 22  /

        ID OPEN_IN             OPEN_OUT
---------- ------------------- -------------------
         1 02-03-2009 00:00:00 05-03-2009 00:00:00
         1 11-03-2009 00:00:00 24-03-2009 00:00:00

2 rows selected.

问候,
抢。

It can be done a little bit simpler. First let's create a sample table:

SQL> create table mytable (id,state,state_time)
  2  as
  3  select 1, 'Open', date '2009-03-02' from dual union all
  4  select 1, 'Closed', date '2009-03-05' from dual union all
  5  select 1, 'Open', date '2009-03-11' from dual union all
  6  select 1, 'Shut down', date '2009-03-26' from dual union all
  7  select 1, 'Wiped out', date '2009-03-24' from dual union all
  8  select 1, 'Demolished', date '2009-04-13' from dual
  9  /

Table created.

The data equals the output of your select statement:

SQL> SELECT id,
  2         DECODE(state, 'Open', state_in, NULL) AS open_in,
  3         DECODE(state, 'Not Open', state_in, NULL) AS open_out
  4  FROM (
  5         SELECT id,
  6                CASE WHEN state = 'Open'
  7                     THEN 'Open'
  8                     ELSE 'Not Open'
  9                END AS state,
 10                TRUNC(state_time) AS state_in
 11         FROM mytable
 12       )
 13  /

        ID OPEN_IN             OPEN_OUT
---------- ------------------- -------------------
         1 02-03-2009 00:00:00
         1                     05-03-2009 00:00:00
         1 11-03-2009 00:00:00
         1                     26-03-2009 00:00:00
         1                     24-03-2009 00:00:00
         1                     13-04-2009 00:00:00

6 rows selected.

And here is the slightly easier query:

SQL> select id
  2       , min(case when state = 'Open' then state_time end)  open_in
  3       , min(case when state != 'Open' then state_time end) open_out
  4    from ( select id
  5                , state
  6                , state_time
  7                , max(x) over (partition by id order by state_time) grp
  8             from ( select id
  9                         , state
 10                         , state_time
 11                         , case state
 12                           when 'Open' then
 13                             row_number() over (partition by id order by state_time)
 14                           end x
 15                      from mytable
 16                  )
 17         )
 18   group by id
 19       , grp
 20   order by id
 21       , open_in
 22  /

        ID OPEN_IN             OPEN_OUT
---------- ------------------- -------------------
         1 02-03-2009 00:00:00 05-03-2009 00:00:00
         1 11-03-2009 00:00:00 24-03-2009 00:00:00

2 rows selected.

Regards,
Rob.

萧瑟寒风 2024-09-09 00:26:36

我认为 Stack Overflow 一定是鼓舞人心的,或者至少它可以帮助我更清晰地思考。经过一整天的努力,我终于明白了:

SELECT id,
       open_in,
       open_out
FROM (
       SELECT id,
              open_in,
              LAG(open_out, times_opened) OVER (PARTITION BY id
                                                ORDER BY open_out DESC
                                                NULLS LAST) AS open_out
       FROM (
              SELECT id,
                     open_in,
                     open_out,
                     COUNT(DISTINCT open_in) OVER (PARTITION BY id)
                       AS times_opened
              FROM (
                     SELECT id,
                            DECODE(state, 'Open', state_in, NULL) AS open_in,
                            DECODE(state, 'Not Open', state_in, NULL)
                              AS open_out
                     FROM (
                            SELECT id,
                                   CASE WHEN state = 'Open'
                                        THEN 'Open'
                                        ELSE 'Not Open'
                                   END AS state,
                                   TRUNC(au_time) AS state_in
                            FROM ...
                          )
                   )
            )
     )
WHERE open_in IS NOT NULL

更新:看起来这并不完全有效。它与我的问题中的示例配合得很好,但是当有多个唯一的 id 时,LAG 内容会发生变化,并且日期并不总是对齐。 :(

I think Stack Overflow must be inspirational, or at least it helps me think clearer. After struggling with this thing all day, I finally got it:

SELECT id,
       open_in,
       open_out
FROM (
       SELECT id,
              open_in,
              LAG(open_out, times_opened) OVER (PARTITION BY id
                                                ORDER BY open_out DESC
                                                NULLS LAST) AS open_out
       FROM (
              SELECT id,
                     open_in,
                     open_out,
                     COUNT(DISTINCT open_in) OVER (PARTITION BY id)
                       AS times_opened
              FROM (
                     SELECT id,
                            DECODE(state, 'Open', state_in, NULL) AS open_in,
                            DECODE(state, 'Not Open', state_in, NULL)
                              AS open_out
                     FROM (
                            SELECT id,
                                   CASE WHEN state = 'Open'
                                        THEN 'Open'
                                        ELSE 'Not Open'
                                   END AS state,
                                   TRUNC(au_time) AS state_in
                            FROM ...
                          )
                   )
            )
     )
WHERE open_in IS NOT NULL

Update: looks like this doesn't completely work. It works fine with the example in my question, but when there are multiple unique id's, the LAG stuff gets shifted and dates don't always align. :(

~没有更多了~
我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
原文