如何找到该系列中的第一百万个数字:2 3 4 6 9 13 19 28 42 63 ...?
在我的比较中达到 3000 大约需要一分钟,但我需要知道该系列中的第一百万个数字。该定义是递归的,因此除了计算第一百万个数字之前的所有内容之外,我看不到任何快捷方式。如何快速计算该系列中的第一百万个数字?
系列定义
n_{i+1} = \floor{ 3/2 * n_{i} }
和 n_{0}=2
。
有趣的是,只有一个网站根据 Google 列出了该系列:这个 。
Bash 代码太慢
#!/bin/bash
function series
{
n=$( echo "3/2*$n" | bc -l | tr '\n' ' ' | sed -e 's@\\@@g' -e 's@ @@g' );
# bc gives \ at very large numbers, sed-tr for it
n=$( echo $n/1 | bc ) #DUMMY FLOOR func
}
n=2
nth=1
while [ true ]; #$nth -lt 500 ];
do
series $n # n gets new value in the function through global value
echo $nth $n
nth=$( echo $nth + 1 | bc ) #n++
done
It takes about minute to achieve 3000 in my comp but I need to know the millionth number in the series. The definition is recursive so I cannot see any shortcuts except to calculate everything before the millionth number. How can you fast calculate millionth number in the series?
Series Def
n_{i+1} = \floor{ 3/2 * n_{i} }
and n_{0}=2
.
Interestingly, only one site list the series according to Google: this one.
Too slow Bash code
#!/bin/bash
function series
{
n=$( echo "3/2*$n" | bc -l | tr '\n' ' ' | sed -e 's@\\@@g' -e 's@ @@g' );
# bc gives \ at very large numbers, sed-tr for it
n=$( echo $n/1 | bc ) #DUMMY FLOOR func
}
n=2
nth=1
while [ true ]; #$nth -lt 500 ];
do
series $n # n gets new value in the function through global value
echo $nth $n
nth=$( echo $nth + 1 | bc ) #n++
done
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。
绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论
评论(12)
通过以二进制方式思考问题,您可以轻松解决这个问题。 Floor(3/2*i) 基本上就是右移、截断和添加。在伪代码中:
以任何形式实现都应该相当快。
我刚刚在 Mathematica 中实现了这一点,似乎 BitShiftRight 操作也会切断单位位置之后的位,以便自动处理。这是一行:
16 秒,数字打印得很好,虽然很长:
完整结果此处。
You can easily solve this by thinking about the problem in binary. Floor(3/2*i) is basically shift right, truncate and add. In pseudo code:
This should be quite fast to implement in any form.
I just made an implementation of this in Mathematica and it seems that the BitShiftRight operation also chops off the bit past the unit position, so that gets taken care of automatically. Here is the one liner:
16 seconds, the number prints just fine, it is quite long though:
Full result here.
你差一点就找到了。下次,请查看整数系列在线百科全书。
这是条目: http://oeis.org/A061418
这就是说:
健全性测试:
太棒了!现在 1000000 怎么样:
嗯,我试过了。
:]
但你明白了。再次编辑:找到解决方案!请参阅蒂莫或Lasse V. Karlsen 的答案。
编辑:使用 Timo 的位移位思想:
产生
1963756763...226123087 (176092 位)
You almost found it. Next time, check out the Online Encyclopedia of Integer Series.
Here's the entry: http://oeis.org/A061418
That said:
Sanity test:
Awesome! Now how about 1000000:
Well, I tried.
:]
But you get the idea.Edit again: Solution is found! See Timo or Lasse V. Karlsen's answers.
Edit: Using Timo's bit-shifting idea:
yields
1963756763...226123087 (176092 digits)
您的脚本如此缓慢的原因是它在循环中生成
bc
三次、tr
一次和sed
一次。在
bc
中重写整个内容,并在最后执行sed
。我的测试表明仅bc
版本的速度快了 600 多倍。在旧的缓慢系统上,bc
版本只花了不到 16 分钟就找到了第 100,000 个值(仅打印最后一个值)。另请注意,您的“floor”函数实际上是“int”。
请注意,
print
是一个扩展,某些版本的bc
可能没有它。如果是这样,只需引用变量本身,并输出其值。现在您可以执行
chmod +x series.bc
并像这样调用它:The reason your script is so slow is that it's spawning
bc
three times,tr
once andsed
once in a loop.Rewrite the whole thing in
bc
and do thesed
at the end. My test shows that thebc
-only version is over 600 times faster. It took just under 16 minutes on an old slow system for thebc
version to find the 100,000th value (only printing the last).Also, note that your "floor" function is actually "int".
Note that
print
is an extension and some versions ofbc
may not have it. If so just reference the variable by itself and its value should be output.Now you can do
chmod +x series.bc
and call it like this:我使用了以下Java程序:
输出,裁剪:(pastebin上的完整输出)
所以花了大约8.5分钟在我不起眼的机器上。我使用了
-Xmx128M
,但不确定这是否真的有必要。可能有更好的算法,但这总共花了 10 分钟,包括编写简单的实现和运行程序。
示例运行
N=500
(与 OEIS 061418)N=100K
(1445232038814....522773508
)I used the following Java program:
The output, cropped: (full output on pastebin)
So it took about 8.5 minutes on my modest machine. I used
-Xmx128M
, but not sure if that was really necessary.There are probably better algorithms out there, but this took a total of 10 minutes, including writing the naive implementation and running the program.
Sample runs
N=500
(agrees with OEIS 061418)N=100K
(1445232038814....522773508
)这是一个 Python 版本,在我用了 10 年的笔记本电脑上运行大约需要 220 秒:
它产生的结果与 这个答案在pastebin上(也就是说,我验证了它的开始和结束,不是全部。)
Here's a Python version that on my 10-year old laptop takes about 220 seconds to run:
It produces the same result that this answer has on the pastebin (that is, I verified the start and end of it, not everything.)
嗯,
bash
不是我用于高速数值处理的工具。给自己一份 GMP 的副本,并编写一个 C 程序来完成它。很可能有一个数学公式可以快速提供给您,但是,在您需要花时间弄清楚时,GMP 可能会向您提供结果:-)
Hmm,
bash
is not what I'd be using for high speed numerical processing. Get yourself a copy of GMP and put together a C program to do it.There may well be a mathematical formula to give it to you quickly but, in the time it takes you to figure it out, GMP could probably throw you the result :-)
这在
sequences< 中被识别为序列
A061418
/code>站点(又名“整数序列在线百科全书”);根据相关页面,
并使用合适的高精度库(已经建议的 GMP 或 MPIR,也许还有一个像我的宝贝一样的包装器 gmpy 适用于 Python),您可以使用封闭式公式来更快地计算“系列中的第 100 万项”等。
通常可以将递归指定的递归放入封闭公式中。有关该主题的详细初学者介绍,具体数学(作者:Graham、Knuth和帕塔什尼克)真的很难被击败。
This is identified as sequence
A061418
in thesequences
site (AKA "The On-Line Encyclopedia of Integer Sequences"); per the relevant page,and with a suitable high-precision library (GMP as already suggested, or MPIR, and maybe a wrapper on top like my baby gmpy is for Python) you can used the closed-form formula for much speedier computation of "the millionth item in the series" and the like.
It's often possible to put recursively specified recurrences into closed formulas. For an extensive beginner's introduction to the subject, Concrete Mathematics (by Graham, Knuth and Patashnik) is really hard to beat.
您可能可以通过使用更合适的语言来接近一点,例如,Scheme:
这在我的机器上大约 8 秒内计算出
(series 100000)
的 17610 位数字。不幸的是,(series 1000000)
仍然需要太长的时间,即使是更新/更快的机器也无法在一分钟内完成。切换到带有大整数库(本例中为 NTL)的 C++:
在我的机器上,这将在 4 分 35 秒内计算出 1000000 的级数。这速度足够快,我几乎相信一台非常快的新机器至少可以在一分钟内完成(是的,我检查了当我使用移位而不是乘法/除法时发生了什么 -它比较慢)。
不幸的是,其他人建议的封闭式计算似乎没有什么帮助。要使用它,您需要以足够的精度计算常数 K。我没有看到 K 的封闭形式计算,所以这实际上只是将迭代转移到计算 K,并且看起来计算 K 到足够的精度比计算原始序列快一点(如果有的话)。
You can probably get a bit closer by using a more suitable language, e.g., Scheme:
This computes the 17610 digits of
(series 100000)
in about 8 seconds on my machine. Unfortunately,(series 1000000)
still takes far too long for even a much newer/faster machine to have any hope of finishing in a minute.Switching to C++ with a big-integer library (NTL, in this case):
This computes the series for 1000000 in 4 minutes, 35 seconds on my machine. That's fast enough that I can almost believe a really fast, new machine might at least come close to finishing in a minute (and yes, I checked what happened when I used shifts instead of multiplication/division -- it was slower).
Unfortunately, the closed-form computation others have suggested seems to be of little help. To use it you need to compute the constant K to sufficient precision. I don't see a closed-form computation of K, so this really just shifts the iteration to computing K, and it looks like computing K to sufficient precision is little (if any) faster that computing the original series.
在 Pari 中这很容易做到:
在我的机器上这需要 14 秒。当然,还有更快的方法——我想到了 GMP——但为什么还要麻烦呢?您将无法将运行时间缩短超过 10 秒,并且开发时间将约为分钟。 :)
小点:在原始公式中,是需要第百万项 n999999 还是 n1000000(索引为 100 万的数字)是不明确的;我给出后者,因为我看到前者已经在上面计算过了。
It's very easy to do in Pari:
This takes 14 seconds on my machine. There are faster ways, of course -- GMP comes to mind -- but why bother? You won't be able to shave more than 10 seconds off the runtime, and development time would be on the order of minutes. :)
Minor point: It's ambiguous in the original formulation whether the millionth term n999999 is desired or n1000000, the number with index one million; I give the latter since I see the former is already calculated above.
这几乎是一阶递归关系,除了地板,它把事情搞乱了。如果您不想发言,
http://en.wikipedia.org/wiki/Recurrence_relation
另外,不要使用 bash。
This is almost a first order recurrence relation, except for the floor, which messes things up. If you didn't want the floor,
http://en.wikipedia.org/wiki/Recurrence_relation
Also, don't use bash.
在大多数情况下,递归公式将花费相当长的时间
因为它必须维护机器堆栈。为什么不使用动态
而是编程?
即(伪代码)
当然,为了获得有意义的结果,您需要一个高精度数字库。
The recursive formulation is going to take quite a long time under most
curcumstances because it has to maintain the machine stack. Why not use dynamic
programming instead?
i.e. (pseudocode)
Of course, for a meaningful result you'll need a high precision number library.
我将 Timo 的想法转换为 elisp。失败时为 100,给出负数。失败,请参阅没有 BigNums!
I converted Timo's ideas to elisp. It fails with 100, giving negative number. FAIL, please, see no BigNums!