光学字符识别 (OCR) 的问题难度处于什么位置?
光学字符识别 (OCR) 正式来说有多难?让我们假设其容错能力与人类相当(我认为约为 98%)。
换句话说,它在问题复杂性和难处理性的 P/NP 规模中处于什么位置?
或者它适合那个规模吗?到底是一个什么样的问题呢?
我不太熟悉问题复杂性的正式定义。我只是好奇。
How hard is Optical Character Recognition (OCR), formally? Let's assume an error tolerance comparable to a human (which is, I believe, around 98%).
In other words, where would it fit in the P/NP scale of problem complexity and intractability?
Or would it fit on that scale? Just what kind of problem is it?
I'm not terribly familiar with the formal definition of problem complexity. I'm just curious.
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。
绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论
评论(1)
为了在可计算性范围内对问题进行评级,您需要知道您正在使用哪种计算模型。所定义的问题是任何机器都无法计算的。
所以我想你的问题就像问一个人做复杂的计算有多难。
你可以这样想,根据定义,人脑是非确定性的,而且你不能准确地将其评价为计算模型,因为无法准确测量人类在思考问题时会采取多少行动。这不是离散的过程。
Well in order to rate a problem in a computability scale you need to know what kind of computation model you are using. The problem as defined is not computable by any machine.
So I guess your question resembles asking how hard it is for a person to do complex calculations.
You can think of it this way, the human brain is by definition non deterministic moreover you can't exactly rate it as a computing model since it's not exactly measurable how many actions a human does when thinking of a problem. It's not discrete procedure.