Diffie-Hellman -- 原根 mod n -- 密码学问题

发布于 2024-09-01 10:09:06 字数 972 浏览 9 评论 0原文

在下面的代码片段中,请从第一个“for”循环开始解释发生了什么以及为什么。为什么加0,为什么第二次循环加1。 bigi下的“if”语句是怎么回事。最后解释一下modPow方法。预先感谢您有意义的回复。

public static boolean isPrimitive(BigInteger m, BigInteger n) {

    BigInteger bigi, vectorint;
    Vector<BigInteger> v = new Vector<BigInteger>(m.intValue());
    int i;

    for (i=0;i<m.intValue();i++)
        v.add(new BigInteger("0"));

    for (i=1;i<m.intValue();i++)
    {
        bigi = new BigInteger("" + i);

        if (m.gcd(bigi).intValue() == 1)
            v.setElementAt(new BigInteger("1"), n.modPow(bigi,m).intValue());
    }

    for (i=0;i<m.intValue();i++)
    {
        bigi = new BigInteger("" + i);

        if (m.gcd(bigi).intValue() == 1)
        {
            vectorint = v.elementAt(bigi.intValue());
            if ( vectorint.intValue() == 0)
                i = m.intValue() + 1;
        }
    }

    if (i == m.intValue() + 2)
        return false;
    else
        return true;

}

In the below snippet, please explain starting with the first "for" loop what is happening and why. Why is 0 added, why is 1 added in the second loop. What is going on in the "if" statement under bigi. Finally explain the modPow method. Thank you in advance for meaningful replies.

public static boolean isPrimitive(BigInteger m, BigInteger n) {

    BigInteger bigi, vectorint;
    Vector<BigInteger> v = new Vector<BigInteger>(m.intValue());
    int i;

    for (i=0;i<m.intValue();i++)
        v.add(new BigInteger("0"));

    for (i=1;i<m.intValue();i++)
    {
        bigi = new BigInteger("" + i);

        if (m.gcd(bigi).intValue() == 1)
            v.setElementAt(new BigInteger("1"), n.modPow(bigi,m).intValue());
    }

    for (i=0;i<m.intValue();i++)
    {
        bigi = new BigInteger("" + i);

        if (m.gcd(bigi).intValue() == 1)
        {
            vectorint = v.elementAt(bigi.intValue());
            if ( vectorint.intValue() == 0)
                i = m.intValue() + 1;
        }
    }

    if (i == m.intValue() + 2)
        return false;
    else
        return true;

}

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。

评论(1

风透绣罗衣 2024-09-08 10:09:06
  • 将向量视为布尔值列表,0 到 m 中的每个数字都有一个布尔值。当您以这种方式查看时,很明显每个值都设置为 0 以将其初始化为 false,然后设置为 1 以将其设置为 true。

  • 最后一个 for 循环正在测试所有布尔值。如果其中任何一个为 0(表示 false),则该函数返回 false。如果全部为 true,则该函数返回 true。

  • 解释您询问的 if 语句需要解释什么是原根 mod n ,这是该函数的全部要点。我认为如果你的目标是理解这个程序,你应该首先理解它实现了什么。如果您阅读维基百科的文章,您会在第一段中看到这一点:

在模算术中,一个分支
数论,原根模
n 是具有以下性质的任意数 g
任何与 n 互质的数是
与 g (mod n) 次方全等。
也就是说,如果 g 是原根 (mod
n),那么对于每个具有以下性质的整数 a
gcd(a, n) = 1,有一个整数k
使得 gk == a (mod n)。 k 被称为
a 的索引。也就是说,g 是一个
乘法群的生成元
以 n 为模的整数。

  • 函数 modPow 实现 模幂。一旦你了解了如何找到原根 mod n,你就会明白它。

也许您面临的最后一个难题是要知道,如果两个数字的最大公约数为 1,则它们互质。因此,您会在粘贴的算法中看到这些检查。

额外链接:这篇论文有一些很好的背景,包括如何在接近尾声时测试原根。

  • Treat the vector as a list of booleans, with one boolean for each number 0 to m. When you view it that way, it becomes obvious that each value is set to 0 to initialize it to false, and then set to 1 later to set it to true.

  • The last for loop is testing all the booleans. If any of them are 0 (indicating false), then the function returns false. If all are true, then the function returns true.

  • Explaining the if statement you asked about would require explaining what a primitive root mod n is, which is the whole point of the function. I think if your goal is to understand this program, you should first understand what it implements. If you read Wikipedia's article on it, you'll see this in the first paragraph:

In modular arithmetic, a branch of
number theory, a primitive root modulo
n is any number g with the property
that any number coprime to n is
congruent to a power of g (mod n).
That is, if g is a primitive root (mod
n), then for every integer a that has
gcd(a, n) = 1, there is an integer k
such that gk ≡ a (mod n). k is called
the index of a. That is, g is a
generator of the multiplicative group
of integers modulo n.

Perhaps the final piece of the puzzle for you is to know that two numbers are coprime if their greatest common divisor is 1. And so you see these checks in the algorithm you pasted.

Bonus link: This paper has some nice background, including how to test for primitive roots near the end.

~没有更多了~
我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
原文