由简单计算生成的复杂行为
Stephen Wolfram 在 TED 上就他与 Mathematica 和 Wolfram Alpha 的工作进行了精彩的演讲。除其他外,他指出非常简单的计算如何产生极其复杂的行为。 (他接着讨论了他计算整个物理宇宙的野心。不管你怎么说,你都得给这个家伙一些疯狂想法的信任……)
作为一个例子,他展示了几个元胞自动机。
您还知道哪些其他简单计算的例子可以产生令人着迷的结果?
Stephen Wolfram gave a fascinating talk at TED about his work with Mathematica and Wolfram Alpha. Amongst other things, he pointed out how very simple computations can yield extremely complex behaviors. (He goes on to discuss his ambition for computing the entire physical universe. Say what you will, you gotta give the guy some credit for his wild ideas...)
As an example he showed several cellular automata.
What other examples of simple computations do you know of that yield fascinating results?
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。
绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论
评论(4)
嗯,显而易见的答案是分形,从曼德尔布罗特集开始。
Well, the obvious answer is fractals, starting with Mandelbrot Set.
Hénon 地图:
通常使用a = 1.4 和b = 0.3。对于这些值,行为是混乱的,所有点似乎最终都会收敛到以下形状,称为 Hénon 吸引子:
此形状似乎具有分形属性。
我说“出现”两次,因为这些观察结果都没有得到数学证明。
The Hénon Map:
Often, a = 1.4 and b = 0.3 are used. For these values, the behaviour is chaotic, and all points appear to eventually converge to the following shape, called the Hénon Attractor:
This shape appears to have fractal properties.
I say "appear" twice, because neither of these observations have been mathematically proven.
最初的游戏是康威的生命游戏。
The original one was Conway's game of life.
Collatz 猜想:
猜想是最终会达到 1,并且这已通过大数实验得到验证(高达 5.7 * 10^18) ,但从未经过数学证明。
即使对于相当小的数字,这个值也可能变得非常大,直到最终崩溃为 1。
The Collatz Conjecture:
The Conjecture is that you'll eventually reach 1, and this has been experimentally verified for large numbers (up to 5.7 * 10^18) , but never been mathematically proven.
Even for fairly small numbers, this can grow very big until eventually collapsing to 1.