We don’t allow questions seeking recommendations for software libraries, tutorials, tools, books, or other off-site resources. You can edit the question so it can be answered with facts and citations.
Closed 5 years ago.
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
接受
或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
发布评论
评论(3)
相位相关性如http://en.wikipedia.org/wiki/Phase_correlation所述,摘自https://github.com/michaelting/Phase_Correlation/blob/master/phase_corr.py 。
这是一个示例:我们拍摄两个相似的图像,但相位不同,并绘制相位相关性(黑色图像,在适当的相位差处有一个白点)。
Phase correlation as described by http://en.wikipedia.org/wiki/Phase_correlation, taken from https://github.com/michaelting/Phase_Correlation/blob/master/phase_corr.py.
Here is an example: We take two similar images, but of different phases and plot the phase correlation (a black image with a single white dot at the appropriate phase difference).
使用 scipy 这应该是一行(尽管你可能可以避免使用 ndimage 包)
假设你已经成功地将原始图像读入 numpy 数组 a & 中。 b.如果是 2D 图像,mayavi 可能有点大材小用,而且使用 matplotlib 可能比 chaco 更容易。如果使用 matplotlib,你可以用
using scipy this should be a one-liner (although you can probably avoid the ndimage package)
assuming you've managed to read your original images into numpy arrays a & b. If it's 2D images mayavi might be a bit overkill, and it would probably be easier to use matplotlib than chaco. If using matplotlib, you could do the whole lot with
Scipy 在其 scipy.ndimage 包中包含许多图像处理例程。
Scipy contains many image processing routines in its scipy.ndimage package.