用于离散马尔可夫链模拟的 R 库
我正在寻找类似“msm”包的东西,但适用于离散马尔可夫链。例如,如果我有一个
Pi <- matrix(c(1/3,1/3,1/3,
0,2/3,1/6,
2/3,0,1/2))
针对状态 A、B、C 定义的转移矩阵。如何根据该转移矩阵模拟马尔可夫链?
I am looking for something like the 'msm' package, but for discrete Markov chains. For example, if I had a transition matrix defined as such
Pi <- matrix(c(1/3,1/3,1/3,
0,2/3,1/6,
2/3,0,1/2))
for states A,B,C. How can I simulate a Markov chain according to that transition matrix?
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。
绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论
评论(3)
不久前,我编写了一组用于模拟和估计离散马尔可夫链概率矩阵的函数:http ://www.feferraz.net/files/lista/DTMC.R。
您所要求的相关代码:
A while back I wrote a set of functions for simulation and estimation of Discrete Markov Chain probability matrices: http://www.feferraz.net/files/lista/DTMC.R.
Relevant code for what you're asking:
啊,当我为你写下它时,你找到了解决方案。这是我想出的一个简单的例子:
请注意,概率转移矩阵的每行之和并不等于 1,而它应该是这样。我的例子有一个稍微改变的概率转移矩阵,它遵循这个规则。
Argh, you found the solution whilst I was writing it up for you. Here's a simple example that I came up with:
Note that your probability transition matrix doesn't sum to 1 in each row, which it should do. My example has a slightly altered probability transition matrix which adheres to this rule.
您现在可以使用 CRAN 中提供的
markovchain
包。用户手册。非常好并且有几个例子。You can now use the
markovchain
package available in CRAN. The user manual. is pretty good and has several examples.