初学者资源/分类算法介绍

发布于 2024-08-30 20:04:05 字数 1459 浏览 12 评论 0原文

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。

评论(3

孤千羽 2024-09-06 20:04:05

我一直发现Andrew Moore 的教程非常有用。它们以扎实的统计理论为基础,如果您将来选择阅读它们,对于理解论文将非常有用。这是一个简短的描述:

其中包括分类
决策树等算法,
神经网络、贝叶斯分类器、
支持向量机和
基于案例(又称非参数)
学习。它们包括回归
多变量等算法
多项式回归、MARS、局部
加权回归、GMDH 和神经网络
网。它们还包括其他数据
聚类等挖掘操作
(混合模型、k 均值和
分层),贝叶斯网络和
强化学习

I've always found Andrew Moore's Tutorials to be very useful. They're grounded in solid statistical theory and will be very useful in understanding papers if you choose to read them in the future. Here's a short description:

These include classification
algorithms such as decision trees,
neural nets, Bayesian classifiers,
Support Vector Machines and
cased-based (aka non-parametric)
learning. They include regression
algorithms such as multivariate
polynomial regression, MARS, Locally
Weighted Regression, GMDH and neural
nets. And they include other data
mining operations such as clustering
(mixture models, k-means and
hierarchical), Bayesian networks and
Reinforcement Learning

空城之時有危險 2024-09-06 20:04:05

参考安德鲁摩尔教程的答案是一个很好的答案。然而,我想通过建议阅读一些关于推动许多分类系统创建的需求来补充它:因果关系的识别。这与涉及统计推断的许多建模问题相关。

据我所知,目前学习因果关系和分类器系统(尤其是贝叶斯分类器)的最佳资源是 Judea Pearl 的书《因果关系:模型、推理和推论》

The answer referring to Andrew Moore's tutorials is a good one. I'd like to augment it, however, by suggesting some reading on the need which drives the creation of many classification systems in the first place: identification of causal relationships. This is relevant to many modeling problems involving statistical inference.

The best current resource I know of for learning about causality and classifier systems (especially Bayesian classifiers) is Judea Pearl's book "Causality: models, reasoning, and inference".

爺獨霸怡葒院 2024-09-06 20:04:05

机器学习概述

要全面了解该领域,请观看 吴恩达的机器学习课程

本课程 (CS229) 由 Andrew Ng 教授教授,广泛介绍了机器学习和统计模式识别。主题包括监督学习、无监督学习、学习理论、强化学习和自适应控制。还讨论了机器学习的最新应用,例如机器人控制、数据挖掘、自主导航、生物信息学、语音识别以及文本和网络数据处理。

分类器

至于您应该使用哪个分类器,我建议首先从支持向量机 (SVM) 用于一般应用分类任务。它们将为您提供最先进的性能,并且您实际上不需要了解它们背​​后的所有理论,只需使用 WEKA 等包提供的实现即可。

如果您有更大的数据集,您可能需要尝试使用随机森林 。 WEKA 中还有此算法的实现,并且它们在大数据上训练更快。虽然它们的使用不如 SVM 广泛,但它们的准确性往往与您可以从 SVM 获得的准确性相匹配或接近匹配。

Overview of Machine Learning

To get a good overview of the field, watch the video lectures of Andrew Ng's Machine Learning course.

This course (CS229) -- taught by Professor Andrew Ng -- provides a broad introduction to machine learning and statistical pattern recognition. Topics include supervised learning, unsupervised learning, learning theory, reinforcement learning and adaptive control. Recent applications of machine learning, such as to robotic control, data mining, autonomous navigation, bioinformatics, speech recognition, and text and web data processing are also discussed.

Classifiers

As for which classifier you should use, I'd recommend first starting with Support Vector Machines (SVM) for general applied classification tasks. They'll give you state-of-the-art performance, and you don't really need to understand all of the theory behind them to just use the implementation provided by a package like WEKA.

If you have a larger data-set, you might want to try using Random Forests. There's also an implementation of this algorithm in WEKA, and they train much faster on large data. While they're less broadly used than SVMs, their accuracy tends to match or nearly match the accuracy you could get from one.

~没有更多了~
我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
原文