对两个信号进行卷积
计算以下信号的卷积(您的答案将采用方程的形式):
h[n] = δ[n-1] + δ[n+1],x[n] = δ[na] + δ[n+b]
我不知道自己在做什么用 h 和 x 做。我只是将它们相乘吗? h[n]*x[n]?我用几种类型的模糊和边缘检测器编写了卷积程序,但我不知道如何将这些知识转化为这个问题。请帮忙!
Calculate the convolution of the following signals (your answer will be in the form of an equation):
h[n] = δ[n-1] + δ[n+1], x[n] = δ[n-a] + δ[n+b]
I'm lost as to what I do with h and x. Do I simply multiply them? h[n]*x[n]? I programmed convolution with several types of blurs and edge detectors, but I don't see how to translate that knowledge to this problem. Please help!
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。
绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论
评论(3)
卷积是一种与乘法不同的运算。如果
h[n] = delta[na]
表示 n=a 处的脉冲,则 h 与任意函数f[n]
的卷积等于conv(h,f) = f[na]
,并且您应该能够通过叠加确定问题的答案,因为卷积和加法都是线性运算符。Convolution is an operation distinct from multiplication. If
h[n] = delta[n-a]
represents an impulse at n=a, then the convolution of h and any functionf[n]
is equal toconv(h,f) = f[n-a]
, and you should be able to determine the answer to your question through superposition, since convolution and addition are both linear operators.h 和 x (hx) 的卷积类似于 hx = SUM h[nq]*x[n],其中根据 h 的大小对所有可能的 q 执行求和。如果 h 和 x 无穷大,则总和从 -INF 到 +INF。
The convolution of h and x (hx) will be something like hx = SUM h[n-q]*x[n], where the sum is performed over all possible q's depending on the size of h. If h and x are infinite then the sum goes from -INF to +INF.
在这种情况下(如果您不确定卷积,则更是如此),进行 卷积 会很方便以图形方式,掌握基础知识并将其与分析公式联系起来。
In this case, (and more so if you are unsure about convolution), it is convenient to do the convolution graphically, to grap the basics and relate that to the analytical formula.