检查 BigInteger 是否不是完全平方数

发布于 2024-08-29 22:20:13 字数 362 浏览 7 评论 0原文

我有一个 BigInteger 值,假设它是 282 并且位于变量 x 内。我现在想编写一个 while 循环,其中指出:

while b2 isn't a perfect square:
    a ← a + 1
    b2 ← a*a - N
endwhile

我如何使用 BigInteger 来做这样的事情?

编辑:这样做的目的是让我可以编写此方法。正如文章所述,必须检查 b2 是否不是平方。

I have a BigInteger value, let's say it is 282 and is inside the variable x. I now want to write a while loop that states:

while b2 isn't a perfect square:
    a ← a + 1
    b2 ← a*a - N
endwhile

How would I do such a thing using BigInteger?

EDIT: The purpose for this is so I can write this method. As the article states one must check if b2 is not square.

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。

评论(7

她如夕阳 2024-09-05 22:20:14

我发现使用了 sqrt 方法这里< /a>,并简化了平方测试。

private static final BigInteger b100 = new BigInteger("100");
private static final boolean[] isSquareResidue;
static{
    isSquareResidue = new boolean[100];
    for(int i =0;i<100;i++){
        isSquareResidue[(i*i)%100]=true;
    }
}

public static boolean isSquare(final BigInteger r) {
    final int y = (int) r.mod(b100).longValue();
    boolean check = false;
    if (isSquareResidue[y]) {
        final BigInteger temp = sqrt(r);
        if (r.compareTo(temp.pow(2)) == 0) {
            check = true;
        }
    }
    return check;
}

public static BigInteger sqrt(final BigInteger val) {
    final BigInteger two = BigInteger.valueOf(2);
    BigInteger a = BigInteger.ONE.shiftLeft(val.bitLength() / 2);
    BigInteger b;
    do {
        b = val.divide(a);
        a = (a.add(b)).divide(two);
    } while (a.subtract(b).abs().compareTo(two) >= 0);
    return a;
}

I found a sqrt method used here, and simplified the square test.

private static final BigInteger b100 = new BigInteger("100");
private static final boolean[] isSquareResidue;
static{
    isSquareResidue = new boolean[100];
    for(int i =0;i<100;i++){
        isSquareResidue[(i*i)%100]=true;
    }
}

public static boolean isSquare(final BigInteger r) {
    final int y = (int) r.mod(b100).longValue();
    boolean check = false;
    if (isSquareResidue[y]) {
        final BigInteger temp = sqrt(r);
        if (r.compareTo(temp.pow(2)) == 0) {
            check = true;
        }
    }
    return check;
}

public static BigInteger sqrt(final BigInteger val) {
    final BigInteger two = BigInteger.valueOf(2);
    BigInteger a = BigInteger.ONE.shiftLeft(val.bitLength() / 2);
    BigInteger b;
    do {
        b = val.divide(a);
        a = (a.add(b)).divide(two);
    } while (a.subtract(b).abs().compareTo(two) >= 0);
    return a;
}
ぃ弥猫深巷。 2024-09-05 22:20:14
public static Boolean PerfectSQR(BigInteger A){BigInteger B=A.sqrt(), C=B.multiply(B);return (C.equals(A));}
public static Boolean PerfectSQR(BigInteger A){BigInteger B=A.sqrt(), C=B.multiply(B);return (C.equals(A));}
避讳 2024-09-05 22:20:14

不要使用这个...

 BigInteger n = ...;
 double n_as_double = n.doubleValue();
 double n_sqrt = Math.sqrt(n_as_double);
 BigInteger n_sqrt_as_int = new BigDecimal(n_sqrt).toBigInteger();
 if (n_sqrt_as_int.pow(2).equals(n)) {
  // number is perfect square
 }

正如 Christian Semrau 在下面评论的那样 - 这不起作用。我很抱歉发布错误的答案。

DON'T use this...

 BigInteger n = ...;
 double n_as_double = n.doubleValue();
 double n_sqrt = Math.sqrt(n_as_double);
 BigInteger n_sqrt_as_int = new BigDecimal(n_sqrt).toBigInteger();
 if (n_sqrt_as_int.pow(2).equals(n)) {
  // number is perfect square
 }

As Christian Semrau commented below - this doesn't work. I am sorry for posting incorrect answer.

不必你懂 2024-09-05 22:20:14
using System.Numerics; // needed for BigInteger

/* Variables */
BigInteger a, b, b2, n, p, q;
int flag;

/* Assign Data */
n = 10147;
a = iSqrt(n);

/* Algorithm */
do
{   a = a + 1;
    b2 = (a * a) – n;
    b = iSqrt(b2);
    flag = BigInteger.Compare(b * b, b2);
} while(flag != 0);

/* Output Data */
p = a + b;
q = a – b;


/* Method */
    private static BigInteger iSqrt(BigInteger num)
    { // Finds the integer square root of a positive number            
        if (0 == num) { return 0; }     // Avoid zero divide            
        BigInteger n = (num / 2) + 1;   // Initial estimate, never low            
        BigInteger n1 = (n + (num / n)) / 2;
        while (n1 < n)
        {   n = n1;
            n1 = (n + (num / n)) / 2;
        }
        return n;
    } // end iSqrt()
using System.Numerics; // needed for BigInteger

/* Variables */
BigInteger a, b, b2, n, p, q;
int flag;

/* Assign Data */
n = 10147;
a = iSqrt(n);

/* Algorithm */
do
{   a = a + 1;
    b2 = (a * a) – n;
    b = iSqrt(b2);
    flag = BigInteger.Compare(b * b, b2);
} while(flag != 0);

/* Output Data */
p = a + b;
q = a – b;


/* Method */
    private static BigInteger iSqrt(BigInteger num)
    { // Finds the integer square root of a positive number            
        if (0 == num) { return 0; }     // Avoid zero divide            
        BigInteger n = (num / 2) + 1;   // Initial estimate, never low            
        BigInteger n1 = (n + (num / n)) / 2;
        while (n1 < n)
        {   n = n1;
            n1 = (n + (num / n)) / 2;
        }
        return n;
    } // end iSqrt()
背叛残局 2024-09-05 22:20:14
private static boolean isSqrt(BigInteger n, BigInteger root)
{
    final BigInteger lowerBound = root.pow(2);
    final BigInteger upperBound = root.add(BigInteger.ONE).pow(2);
    return lowerBound.compareTo(n) <= 0
        && n.compareTo(upperBound) < 0;
}

我使用 JavaScript BigInt 尝试了上述操作:

function isPerfectSqrt(n, root) {
  const lowerBound = root**2n;
  const upperBound = (root+1n)**2n
  return lowerBound <= n && n < upperBound;
}

发现它的速度(在 Node V8 中)仅比单行代码快 60% 左右:

function isPerfectSqrt(n, root) {
  return (n/root === root && n%root === 0n)
}
private static boolean isSqrt(BigInteger n, BigInteger root)
{
    final BigInteger lowerBound = root.pow(2);
    final BigInteger upperBound = root.add(BigInteger.ONE).pow(2);
    return lowerBound.compareTo(n) <= 0
        && n.compareTo(upperBound) < 0;
}

I tried the above using JavaScript BigInt:

function isPerfectSqrt(n, root) {
  const lowerBound = root**2n;
  const upperBound = (root+1n)**2n
  return lowerBound <= n && n < upperBound;
}

And found it was only about 60% as fast (in Node V8) as the one-liner:

function isPerfectSqrt(n, root) {
  return (n/root === root && n%root === 0n)
}
坚持沉默 2024-09-05 22:20:14

您想要进行完全平方检验的数字是 A。B 是 A 的整数平方根,.sqrt() 函数返回平方根的整数下限。返回 B*B=A 的布尔值。如果它是完全平方数,则布尔返回为“true”;如果不是完全平方,则返回“false”。

public static Boolean PerfectSQR(BigInteger A) {
    BigInteger B = A.sqrt();
    return B.multiply(B).equals(A);
}

另一种方法是使用 sqrtAndRemainder() 函数。如果余数 B[1] 为零,则它是完全平方数。然后返回布尔值 TRUE,如下所示。

public static Boolean PerfectSQR(BigInteger A) {
    BigInteger [] B=A.sqrtAndRemainder();
    return B[1].equals(BigInteger.ZERO);
}

The number you want to do a perfect square test on is A. B is the integer square root of A and the .sqrt() function returns the integer lower floor of the square root. The Boolean of B*B=A is returned. The Boolean return is "true" if it is a perfect square and "false" if it is not a perfect square.

public static Boolean PerfectSQR(BigInteger A) {
    BigInteger B = A.sqrt();
    return B.multiply(B).equals(A);
}

An alternative is to use the sqrtAndRemainder() function. If the remainder, B[1], is zero it is a perfect square. The boolean TRUE then is returned as shown below.

public static Boolean PerfectSQR(BigInteger A) {
    BigInteger [] B=A.sqrtAndRemainder();
    return B[1].equals(BigInteger.ZERO);
}
慈悲佛祖 2024-09-05 22:20:13

计算整数平方根,然后检查它的平方是否是您的数字。这是我使用 Heron 方法 计算平方根的方法:

private static final BigInteger TWO = BigInteger.valueOf(2);


/**
 * Computes the integer square root of a number.
 *
 * @param n  The number.
 *
 * @return  The integer square root, i.e. the largest number whose square
 *     doesn't exceed n.
 */
public static BigInteger sqrt(BigInteger n)
{
    if (n.signum() >= 0)
    {
        final int bitLength = n.bitLength();
        BigInteger root = BigInteger.ONE.shiftLeft(bitLength / 2);

        while (!isSqrt(n, root))
        {
            root = root.add(n.divide(root)).divide(TWO);
        }
        return root;
    }
    else
    {
        throw new ArithmeticException("square root of negative number");
    }
}


private static boolean isSqrt(BigInteger n, BigInteger root)
{
    final BigInteger lowerBound = root.pow(2);
    final BigInteger upperBound = root.add(BigInteger.ONE).pow(2);
    return lowerBound.compareTo(n) <= 0
        && n.compareTo(upperBound) < 0;
}

Compute the integer square root, then check that its square is your number. Here is my method of computing the square root using Heron's method:

private static final BigInteger TWO = BigInteger.valueOf(2);


/**
 * Computes the integer square root of a number.
 *
 * @param n  The number.
 *
 * @return  The integer square root, i.e. the largest number whose square
 *     doesn't exceed n.
 */
public static BigInteger sqrt(BigInteger n)
{
    if (n.signum() >= 0)
    {
        final int bitLength = n.bitLength();
        BigInteger root = BigInteger.ONE.shiftLeft(bitLength / 2);

        while (!isSqrt(n, root))
        {
            root = root.add(n.divide(root)).divide(TWO);
        }
        return root;
    }
    else
    {
        throw new ArithmeticException("square root of negative number");
    }
}


private static boolean isSqrt(BigInteger n, BigInteger root)
{
    final BigInteger lowerBound = root.pow(2);
    final BigInteger upperBound = root.add(BigInteger.ONE).pow(2);
    return lowerBound.compareTo(n) <= 0
        && n.compareTo(upperBound) < 0;
}
~没有更多了~
我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
原文