插入新边时更新最小生成树

发布于 2024-08-29 19:08:03 字数 818 浏览 11 评论 0原文

我在大学遇到过以下问题:

G = (V, E)是一个成本为ce的(无向)图>= 0 在边 eE 上。假设您在G 中得到了一个最小成本生成树T。现在假设向G添加一条新边,连接两个节点vtvV,成本c

  1. 给出一个有效的算法来测试T是否仍然是最小成本生成树,并将新边添加到G(但不添加到树T) )。让你的算法在 O(|E|) 时间内运行。你能在 O(|V|) 时间内完成吗?请注意您对使用什么数据结构来表示树 T 和图 G 所做的任何假设。
  2. 假设T不再是最小成本生成树。给出一个线性时间算法(时间 O(|E|))将树 T 更新为新的最小成本生成树。

这是我找到的解决方案:

Let e1=(a,b) the new edge added
Find in T the shortest path from a to b (BFS)
if e1 is the most expensive edge in the cycle then T remains the MST
else T is not the MST

它似乎有效,但我可以轻松地在 O(|V|) 时间内运行它,而问题则需要 O(|E|) 时间。我错过了什么吗?

顺便说一下,我们有权向任何人寻求帮助,所以我没有作弊:D

I've been presented the following problem in University:

Let G = (V, E) be an (undirected) graph with costs ce >= 0 on the edges eE. Assume you are given a minimum-cost spanning tree T in G. Now assume that a new edge is added to G, connecting two nodes v, tvV with cost c.

  1. Give an efficient algorithm to test if T remains the minimum-cost spanning tree with the new edge added to G (but not to the tree T). Make your algorithm run in time O(|E|). Can you do it in O(|V|) time? Please note any assumptions you make about what data structure is used to represent the tree T and the graph G.
  2. Suppose T is no longer the minimum-cost spanning tree. Give a linear-time algorithm (time O(|E|)) to update the tree T to the new minimum-cost spanning tree.

This is the solution I found:

Let e1=(a,b) the new edge added
Find in T the shortest path from a to b (BFS)
if e1 is the most expensive edge in the cycle then T remains the MST
else T is not the MST

It seems to work but I can easily make this run in O(|V|) time, while the problem asks O(|E|) time. Am I missing something?

By the way we are authorized to ask for help from anyone so I'm not cheating :D

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。

评论(3

黑白记忆 2024-09-05 19:08:03

你的想法是正确的,但如果你以正确的方式存储树,你可以在最短路径搜索方面比 BFS 做得更好。

假设 T 中的一个节点 r 是根(如果您已在矩阵或邻接中标记了树边,则可以从那里选择任何节点和 BFS 来生成此结构 -列表图结构),每个其他节点都有一个父指针和一个深度计数。要在 T 中找到 ab 之间的最短路径:

  1. a 为“更深”节点;如果需要的话交换。
  2. a开始遍历父链接,直到到达br,存储遍历的路径,标记访问过的节点。
  3. 如果到达b,则遍历最短路径。
  4. 如果到达r,那么也从b遍历到根;如果到达从 ar 遍历中到达的节点,则停止。将两者相交的地方连接起来,您就得到了T中的最短路径。

该算法有效性的证明留给读者作为练习。这与 BFS 一样是 O(|V|),但通常也更快。在实践中,只有少数 MST 配置实际上需要 O(|V|) 时间。当然,生成父链接树需要 O(|V|) 时间,因此这仅在某些情况下有帮助,例如如果您使用 MST 构建算法,该算法在确定父链接树的过程中自然地创建此结构MST。

正如另一位评论者所说,请注意,如果图存在 MST,则它是连接的,因此 |V| <= |E|因此 O(|V|) < O(|E|)。

此外,要在 O(|V|) 时间内修复树,如果需要,只需找到循环上最长的边并将其删除,用新边替换它即可。使用父链接 MST 有效地完成此操作也是读者的一项练习。

You've got the right idea, though you can do better than BFS for the shortest-path search if you store the tree the right way.

Say one node r in T is the root (you can pick any node and BFS from there to generate this structure if you have marked the tree edges in a matrix or adjacency-list graph structure), and each other node has a parent pointer and a depth count. To find the shortest path between a and b in T:

  1. Let a be the 'deeper' node; swap if needed.
  2. Traverse the parent links from a until either b or r is reached, storing the path traversed, marking the nodes visited.
  3. If you reach b, the shortest path is as traversed.
  4. If you reach r, then also traverse from b to the root; if you reach node reached in the traversal from a to r, stop. Join the two where they meet and you have the shortest path in T.

Proof of the validity of this algorithm is left as an exercise to the reader. This is O(|V|) like BFS, but will also generally be faster. Only a few MST configurations would actually require O(|V|) time in practice. Of course, generating the parent-link tree takes O(|V|) time to begin with, so this only help in some circumstances, such as if you use an MST-building algorithm that naturally creates this structure in the process of determining the MST.

As another commenter said, note that if there is a MST for a graph it is connected, so |V| <= |E| and thus O(|V|) < O(|E|).

Also, to fix the tree in O(|V|) time, if needed, simply find the longest edge on the cycle and remove it, replacing it with the new edge. Doing this efficiently with a parent-link MST is also an exercise for the reader.

九命猫 2024-09-05 19:08:03

我认为 BFS 就足够了。它的复杂度是 O(|V| + |E|) 但在一棵树 |E| 中小于|V|所以 O(2|V|) 就是 O(|V|)

I think a BFS would suffice. And it's complexity is O(|V| + |E|) but in a tree |E| is less than |V| so it's O(2|V|) that is O(|V|)

你与昨日 2024-09-05 19:08:03

我相信你的步骤在T中查找从a到b的最短路径是一个顺序E操作。

I believe your step Find in T the shortest path from a to b is an order E operation.

~没有更多了~
我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
原文