如何在 Flex/bison 中实现 If 语句

发布于 2024-08-29 04:04:55 字数 2718 浏览 5 评论 0原文

我没有收到错误消息,请您帮帮我,这是 .l 和 .y 文件。谢谢。

%{
#include "ifanw.tab.h"
extern int yylval;
%}
%%
"="      { return EQ; }
"!="     { return NE; }
"<"      { return LT; }
"<="     { return LE; }
">"      { return GT; }
">="     { return GE; }
"+"      { return PLUS; }
"-"      { return MINUS; }
"*"      { return MULT; }
"/"      { return DIVIDE; }
")"      { return RPAREN; }
"("      { return LPAREN; }
":="     { return ASSIGN; }
";"      { return SEMICOLON; }
"IF"     { return IF; }
"THEN"   { return THEN; }
"ELSE"   { return ELSE; }
"FI"     { return FI; }
"WHILE"  { return WHILE; }
"DO"     { return DO; }
"OD"     { return OD; }
"PRINT"  { return PRINT; }
[0-9]+   { yylval = atoi(yytext); return NUMBER; }
[a-z]    { yylval = yytext[0] - 'a'; return NAME; }   
\        { ; }
\n       { nextline(); }
\t       { ; }
"//".*\n { nextline(); }
.        { yyerror("illegal token"); }
%%

Yacc 文件

%start ROOT

%token EQ
%token NE
%token LT
%token LE
%token GT
%token GE
%token PLUS
%token MINUS
%token MULT
%token DIVIDE
%token RPAREN
%token LPAREN
%token ASSIGN
%token SEMICOLON
%token IF
%token THEN
%token ELSE
%token FI
%token WHILE
%token DO
%token OD
%token PRINT
%token NUMBER
%token NAME

%%

ROOT:
   stmtseq { execute($1); } 
   ;

statement:
     designator ASSIGN expression { $$ = assignment($1, $3); } 
   | PRINT expression { $$ = print($2); } 
   | IF expression THEN stmtseq ELSE stmtseq FI
    { $$ = ifstmt($2, $4, $6); }
   | IF expression THEN stmtseq FI
    { $$ = ifstmt($2, $4, empty()); }
   | WHILE expression DO stmtseq OD { $$ = whilestmt($2, $4); }   
   ;

stmtseq:
     stmtseq SEMICOLON statement { $$ = seq($1, $3); }
   | statement { $$ = $1; }
   ;

expression:
 expr2 { $$ = $1; } 
   | expr2 EQ expr2 { $$ = eq($1, $3); }
   | expr2 NE expr2 { $$ = ne($1, $3); }
   | expr2 LT expr2 { $$ = le($1, $3); }
   | expr2 LE expr2 { $$ = le($1, $3); }
   | expr2 GT expr2 { $$ = gt($1, $3); }
   | expr2 GE expr2 { $$ = gt($1, $3); }
   ;

expr2:
     expr3 { $$ == $1; }
   | expr2 PLUS expr3 { $$ = plus($1, $3); }
   | expr2 MINUS expr3 { $$ = minus($1, $3); }
   ;

expr3:
     expr4 { $$ = $1; }
   | expr3 MULT expr4 { $$ = mult($1, $3); }
   | expr3 DIVIDE expr4 { $$ = divide ($1, $3); }
   ;

expr4:
     PLUS expr4 { $$ = $2; }
   | MINUS expr4 { $$ = neg($2); }
   | LPAREN expression RPAREN { $$ = $2; }
   | NUMBER { $$ = number($1); }
   | designator { $$ = $1; }
   ;

designator:
     NAME { $$ = name($1); }
  ;
%%

我还有一个问题, 是否有可能像汇编器中那样使用 flex/bison 实现 JMP 指令以转到像我的示例一样的标签,感谢您的帮助。

:L1
IF FLAG AND X"0001"
    EVT 23;
ELSE
    WAIT 500 ms;
    JMP L1;
END IF; 

I dont get the error, please can you help me out, here is the .l and .y file.thanks.

%{
#include "ifanw.tab.h"
extern int yylval;
%}
%%
"="      { return EQ; }
"!="     { return NE; }
"<"      { return LT; }
"<="     { return LE; }
">"      { return GT; }
">="     { return GE; }
"+"      { return PLUS; }
"-"      { return MINUS; }
"*"      { return MULT; }
"/"      { return DIVIDE; }
")"      { return RPAREN; }
"("      { return LPAREN; }
":="     { return ASSIGN; }
";"      { return SEMICOLON; }
"IF"     { return IF; }
"THEN"   { return THEN; }
"ELSE"   { return ELSE; }
"FI"     { return FI; }
"WHILE"  { return WHILE; }
"DO"     { return DO; }
"OD"     { return OD; }
"PRINT"  { return PRINT; }
[0-9]+   { yylval = atoi(yytext); return NUMBER; }
[a-z]    { yylval = yytext[0] - 'a'; return NAME; }   
\        { ; }
\n       { nextline(); }
\t       { ; }
"//".*\n { nextline(); }
.        { yyerror("illegal token"); }
%%

Yacc-file

%start ROOT

%token EQ
%token NE
%token LT
%token LE
%token GT
%token GE
%token PLUS
%token MINUS
%token MULT
%token DIVIDE
%token RPAREN
%token LPAREN
%token ASSIGN
%token SEMICOLON
%token IF
%token THEN
%token ELSE
%token FI
%token WHILE
%token DO
%token OD
%token PRINT
%token NUMBER
%token NAME

%%

ROOT:
   stmtseq { execute($1); } 
   ;

statement:
     designator ASSIGN expression { $ = assignment($1, $3); } 
   | PRINT expression { $ = print($2); } 
   | IF expression THEN stmtseq ELSE stmtseq FI
    { $ = ifstmt($2, $4, $6); }
   | IF expression THEN stmtseq FI
    { $ = ifstmt($2, $4, empty()); }
   | WHILE expression DO stmtseq OD { $ = whilestmt($2, $4); }   
   ;

stmtseq:
     stmtseq SEMICOLON statement { $ = seq($1, $3); }
   | statement { $ = $1; }
   ;

expression:
 expr2 { $ = $1; } 
   | expr2 EQ expr2 { $ = eq($1, $3); }
   | expr2 NE expr2 { $ = ne($1, $3); }
   | expr2 LT expr2 { $ = le($1, $3); }
   | expr2 LE expr2 { $ = le($1, $3); }
   | expr2 GT expr2 { $ = gt($1, $3); }
   | expr2 GE expr2 { $ = gt($1, $3); }
   ;

expr2:
     expr3 { $ == $1; }
   | expr2 PLUS expr3 { $ = plus($1, $3); }
   | expr2 MINUS expr3 { $ = minus($1, $3); }
   ;

expr3:
     expr4 { $ = $1; }
   | expr3 MULT expr4 { $ = mult($1, $3); }
   | expr3 DIVIDE expr4 { $ = divide ($1, $3); }
   ;

expr4:
     PLUS expr4 { $ = $2; }
   | MINUS expr4 { $ = neg($2); }
   | LPAREN expression RPAREN { $ = $2; }
   | NUMBER { $ = number($1); }
   | designator { $ = $1; }
   ;

designator:
     NAME { $ = name($1); }
  ;
%%

I have another question,
is there a possibility to implement a JMP instruction with flex/bison like in Assembler to go to a label like my example, thanks for your help.

:L1
IF FLAG AND X"0001"
    EVT 23;
ELSE
    WAIT 500 ms;
    JMP L1;
END IF; 

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。

评论(1

记忆里有你的影子 2024-09-05 04:04:55

编辑:我把旧答案放在最后

这是承诺的更详细的示例:

通常我从所需语言的示例文件开始:

# example.toy
begin # example of the simple toy language
    x = 23;
    while x > 0 do begin
        x = x - 1;
        print(x*x);
    end;
end;

下一步是创建词法分析器+解析器组合,其中前一个文件
通过。

这里是词法分析器(使用 flex -o lexer.c lexer.l 生成源代码)。另请注意,词法分析器源依赖于解析器源(因为 TOKEN_* 常量),因此必须在编译词法分析器源

%option noyywrap

%{
#include "parser.h"
#include <stdlib.h>
%}

%%

"while" return TOKEN_WHILE;
"begin" return TOKEN_BEGIN;
"end"   return TOKEN_END;
"do"    return TOKEN_DO;
[a-zA-Z_][a-zA-Z0-9_]* {yylval.name = strdup(yytext); return TOKEN_ID;}
[-]?[0-9]+    {yylval.val = atoi(yytext); return TOKEN_NUMBER;}
[()=;]  {return *yytext;}
[*/+-<>] {yylval.op = *yytext; return TOKEN_OPERATOR;}
[ \t\n] {/* suppress the output of the whitespaces from the input file to stdout */}
#.* {/* one-line comment */}

和解析器之前运行 bison(使用 bison -d -o parser.c 解析器进行编译。 y-d 告诉 bison 创建 parser.h 头文件,其中包含词法分析器需要的一些内容)

%error-verbose /* instruct bison to generate verbose error messages*/
%{
/* enable debugging of the parser: when yydebug is set to 1 before the
 * yyparse call the parser prints a lot of messages about what it does */
#define YYDEBUG 1
%}

%union {
    int val;
    char op;
    char* name;
}

%token TOKEN_BEGIN TOKEN_END TOKEN_WHILE TOKEN_DO TOKEN_ID TOKEN_NUMBER TOKEN_OPERATOR
%start program

%{
/* Forward declarations */
void yyerror(const char* const message);


%}

%%

program: statement';';

block: TOKEN_BEGIN statements TOKEN_END;

statements:
    | statements statement ';'
    | statements block';';

statement: 
      assignment
    | whileStmt
    | block
    | call;

assignment: TOKEN_ID '=' expression;

expression: TOKEN_ID
    | TOKEN_NUMBER
    | expression TOKEN_OPERATOR expression;

whileStmt: TOKEN_WHILE expression TOKEN_DO statement;

call: TOKEN_ID '(' expression ')';

%%

#include <stdlib.h>

void yyerror(const char* const message)
{
    fprintf(stderr, "Parse error:%s\n", message);
    exit(1);
}

int main()
{
    yydebug = 0;
    yyparse();
}

gcc parser.c lexer.c -o toylang-noop< /code> 调用 toylang-noop example.toy 必须运行且没有任何错误。现在解析器本身可以工作并且可以解析示例脚本。

下一步是创建一个所谓的语法抽象语法树。此时,我首先通过为标记和规则定义不同类型以及向每个解析步骤插入规则来增强解析器。

%error-verbose /* instruct bison to generate verbose error messages*/
%{
#include "astgen.h"
#define YYDEBUG 1

/* Since the parser must return the AST, it must get a parameter where
 * the AST can be stored. The type of the parameter will be void*. */
#define YYPARSE_PARAM astDest
%}

%union {
    int val;
    char op;
    char* name;
    struct AstElement* ast; /* this is the new member to store AST elements */
}

%token TOKEN_BEGIN TOKEN_END TOKEN_WHILE TOKEN_DO
%token<name> TOKEN_ID
%token<val> TOKEN_NUMBER
%token<op> TOKEN_OPERATOR
%type<ast> program block statements statement assignment expression whileStmt call
%start program

%{
/* Forward declarations */
void yyerror(const char* const message);


%}

%%

program: statement';' { (*(struct AstElement**)astDest) = $1; };

block: TOKEN_BEGIN statements TOKEN_END{ $ = $2; };

statements: {$=0;}
    | statements statement ';' {$=makeStatement($1, $2);}
    | statements block';' {$=makeStatement($1, $2);};

statement: 
      assignment {$=$1;}
    | whileStmt {$=$1;}
    | block {$=$1;}
    | call {$=$1;}

assignment: TOKEN_ID '=' expression {$=makeAssignment($1, $3);}

expression: TOKEN_ID {$=makeExpByName($1);}
    | TOKEN_NUMBER {$=makeExpByNum($1);}
    | expression TOKEN_OPERATOR expression {$=makeExp($1, $3, $2);}

whileStmt: TOKEN_WHILE expression TOKEN_DO statement{$=makeWhile($2, $4);};

call: TOKEN_ID '(' expression ')' {$=makeCall($1, $3);};

%%

#include "astexec.h"
#include <stdlib.h>

void yyerror(const char* const message)
{
    fprintf(stderr, "Parse error:%s\n", message);
    exit(1);
}

int main()
{
    yydebug = 0;
    struct AstElement *a;
    yyparse(&a);
}

正如你所看到的,生成 AST 时的主要部分是创建以下节点:
当解析器的某个规则通过时的 AST。由于野牛保持着
当前解析过程本身的堆栈,只需要分配
当前解析堆栈元素的状态
(这些是 $$=foo(bar) 行)

目标是内存中的以下结构:

ekStatements
  .count = 2
  .statements
    ekAssignment
      .name = "x"
      .right
        ekNumber
          .val = 23
    ekWhile
      .cond
        ekBinExpression
        .left
          ekId
            .name = "x"
        .right
          ekNumber
            .val=0
        .op = '>'
      .statements
        ekAssignment
          .name = "x"
          .right
            ekBinExpression
              .left
                ekId
                  .name = "x"
              .right
                ekNumber
                  .val = 1
              .op = '-'
        ekCall
          .name = "print"
          .param
            ekBinExpression
              .left
                ekId
                  .name = "x"
              .right
                ekId
                  .name = "x"
              .op = '*'

要获得该图,需要生成代码,astgen.h:

#ifndef ASTGEN_H
#define ASTGEN_H

struct AstElement
{
    enum {ekId, ekNumber, ekBinExpression, ekAssignment, ekWhile, ekCall, ekStatements, ekLastElement} kind;
    union
    {
        int val;
        char* name;
        struct
        {
            struct AstElement *left, *right;
            char op;
        }expression;
        struct
        {
            char*name;
            struct AstElement* right;
        }assignment;
        struct
        {
            int count;
            struct AstElement** statements;
        }statements;
        struct
        {
            struct AstElement* cond;
            struct AstElement* statements;
        } whileStmt;
        struct
        {
            char* name;
            struct AstElement* param;
        }call;
    } data;
};

struct AstElement* makeAssignment(char*name, struct AstElement* val);
struct AstElement* makeExpByNum(int val);
struct AstElement* makeExpByName(char*name);
struct AstElement* makeExp(struct AstElement* left, struct AstElement* right, char op);
struct AstElement* makeStatement(struct AstElement* dest, struct AstElement* toAppend);
struct AstElement* makeWhile(struct AstElement* cond, struct AstElement* exec);
struct AstElement* makeCall(char* name, struct AstElement* param);
#endif

astgen.c:

#include "astgen.h"
#include <stdio.h>
#include <stdlib.h>
#include <assert.h>

static void* checkAlloc(size_t sz)
{
    void* result = calloc(sz, 1);
    if(!result)
    {
        fprintf(stderr, "alloc failed\n");
        exit(1);
    }
}

struct AstElement* makeAssignment( char*name, struct AstElement* val)
{
    struct AstElement* result = checkAlloc(sizeof(*result));
    result->kind = ekAssignment;
    result->data.assignment.name = name;
    result->data.assignment.right = val;
    return result;
}

struct AstElement* makeExpByNum(int val)
{
    struct AstElement* result = checkAlloc(sizeof(*result));
    result->kind = ekNumber;
    result->data.val = val;
    return result;
}

struct AstElement* makeExpByName(char*name)
{
    struct AstElement* result = checkAlloc(sizeof(*result));
    result->kind = ekId;
    result->data.name = name;
    return result;
}

struct AstElement* makeExp(struct AstElement* left, struct AstElement* right, char op)
{
    struct AstElement* result = checkAlloc(sizeof(*result));
    result->kind = ekBinExpression;
    result->data.expression.left = left;
    result->data.expression.right = right;
    result->data.expression.op = op;
    return result;
}

struct AstElement* makeStatement(struct AstElement* result, struct AstElement* toAppend)
{
    if(!result)
    {
        result = checkAlloc(sizeof(*result));
        result->kind = ekStatements;
        result->data.statements.count = 0;
        result->data.statements.statements = 0;
    }
    assert(ekStatements == result->kind);
    result->data.statements.count++;
    result->data.statements.statements = realloc(result->data.statements.statements, result->data.statements.count*sizeof(*result->data.statements.statements));
    result->data.statements.statements[result->data.statements.count-1] = toAppend;
    return result;
}

struct AstElement* makeWhile(struct AstElement* cond, struct AstElement* exec)
{
    struct AstElement* result = checkAlloc(sizeof(*result));
    result->kind = ekWhile;
    result->data.whileStmt.cond = cond;
    result->data.whileStmt.statements = exec;
    return result;
}

struct AstElement* makeCall(char* name, struct AstElement* param)
{
    struct AstElement* result = checkAlloc(sizeof(*result));
    result->kind = ekCall;
    result->data.call.name = name;
    result->data.call.param = param;
    return result;
}

You可以看到这里 AST 元素的生成是相当单调的
工作。该步骤完成后,程序仍然不执行任何操作,但 AST 可以
在调试器中查看。

下一步是编写解释器。这是astexec.h:

#ifndef ASTEXEC_H
#define ASTEXEC_H

struct AstElement;
struct ExecEnviron;

/* creates the execution engine */
struct ExecEnviron* createEnv();

/* removes the ExecEnviron */
void freeEnv(struct ExecEnviron* e);

/* executes an AST */
void execAst(struct ExecEnviron* e, struct AstElement* a);

#endif

嗯,这看起来很友好。解释器本身很简单,尽管它是
长度。大多数函数仅处理特定类型的 AstElement。这
通过dispatchExpression和dispatchStatement选择正确的函数
功能。调度函数在 valExecs 中查找目标函数
和 runExecs 数组。

astexec.c:

#include "astexec.h"
#include "astgen.h"
#include <stdlib.h>
#include <assert.h>
#include <stdio.h>

struct ExecEnviron
{
    int x; /* The value of the x variable, a real language would have some name->value lookup table instead */
};

static int execTermExpression(struct ExecEnviron* e, struct AstElement* a);
static int execBinExp(struct ExecEnviron* e, struct AstElement* a);
static void execAssign(struct ExecEnviron* e, struct AstElement* a);
static void execWhile(struct ExecEnviron* e, struct AstElement* a);
static void execCall(struct ExecEnviron* e, struct AstElement* a);
static void execStmt(struct ExecEnviron* e, struct AstElement* a);

/* Lookup Array for AST elements which yields values */
static int(*valExecs[])(struct ExecEnviron* e, struct AstElement* a) =
{
    execTermExpression,
    execTermExpression,
    execBinExp,
    NULL,
    NULL,
    NULL,
    NULL
};

/* lookup array for non-value AST elements */
static void(*runExecs[])(struct ExecEnviron* e, struct AstElement* a) =
{
    NULL, /* ID and numbers are canonical and */
    NULL, /* don't need to be executed */
    NULL, /* a binary expression is not executed */
    execAssign,
    execWhile,
    execCall,
    execStmt,
};

/* Dispatches any value expression */
static int dispatchExpression(struct ExecEnviron* e, struct AstElement* a)
{
    assert(a);
    assert(valExecs[a->kind]);
    return valExecs[a->kind](e, a);
}

static void dispatchStatement(struct ExecEnviron* e, struct AstElement* a)
{
    assert(a);
    assert(runExecs[a->kind]);
    runExecs[a->kind](e, a);
}

static void onlyName(const char* name, const char* reference, const char* kind)
{
    if(strcmp(reference, name))
    {
        fprintf(stderr,
            "This language knows only the %s '%s', not '%s'\n",
            kind, reference, name);
        exit(1);
    }
}

static void onlyX(const char* name)
{
    onlyName(name, "x", "variable");
}

static void onlyPrint(const char* name)
{
    onlyName(name, "print", "function");
}

static int execTermExpression(struct ExecEnviron* e, struct AstElement* a)
{
    /* This function looks ugly because it handles two different kinds of
     * AstElement. I would refactor it to an execNameExp and execVal
     * function to get rid of this two if statements. */
    assert(a);
    if(ekNumber == a->kind)
    {
        return a->data.val;
    }
    else
    {
        if(ekId == a->kind)
        {
            onlyX(a->data.name);
            assert(e);
            return e->x;
        }
    }
    fprintf(stderr, "OOPS: tried to get the value of a non-expression(%d)\n", a->kind);
    exit(1);
}

static int execBinExp(struct ExecEnviron* e, struct AstElement* a)
{
    assert(ekBinExpression == a->kind);
    const int left = dispatchExpression(e, a->data.expression.left);
    const int right = dispatchExpression(e, a->data.expression.right);
    switch(a->data.expression.op)
    {
        case '+':
            return left + right;
        case '-':
            return left - right;
        case '*':
            return left * right;
        case '<':
            return left < right;
        case '>':
            return left > right;
        default:
            fprintf(stderr,  "OOPS: Unknown operator:%c\n", a->data.expression.op);
            exit(1);
    }
    /* no return here, since every switch case returns some value (or bails out) */
}

static void execAssign(struct ExecEnviron* e, struct AstElement* a)
{
    assert(a);
    assert(ekAssignment == a->kind);
    onlyX(a->data.assignment.name);
    assert(e);
    struct AstElement* r = a->data.assignment.right;
    e->x = dispatchExpression(e, r);
}

static void execWhile(struct ExecEnviron* e, struct AstElement* a)
{
    assert(a);
    assert(ekWhile == a->kind);
    struct AstElement* const c = a->data.whileStmt.cond;
    struct AstElement* const s = a->data.whileStmt.statements;
    assert(c);
    assert(s);
    while(dispatchExpression(e, c))
    {
        dispatchStatement(e, s);
    }
}

static void execCall(struct ExecEnviron* e, struct AstElement* a)
{
    assert(a);
    assert(ekCall == a->kind);
    onlyPrint(a->data.call.name);
    printf("%d\n", dispatchExpression(e, a->data.call.param));
}

static void execStmt(struct ExecEnviron* e, struct AstElement* a)
{
    assert(a);
    assert(ekStatements == a->kind);
    int i;
    for(i=0; i<a->data.statements.count; i++)
    {
        dispatchStatement(e, a->data.statements.statements[i]);
    }
}

void execAst(struct ExecEnviron* e, struct AstElement* a)
{
    dispatchStatement(e, a);
}

struct ExecEnviron* createEnv()
{
    assert(ekLastElement == (sizeof(valExecs)/sizeof(*valExecs)));
    assert(ekLastElement == (sizeof(runExecs)/sizeof(*runExecs)));
    return calloc(1, sizeof(struct ExecEnviron));
}

void freeEnv(struct ExecEnviron* e)
{
    free(e);
}

现在解释器已完成,并且可以在主函数更新后运行示例:

#include <assert.h>

int main()
{
    yydebug = 0;
    struct AstElement *a = 0;
    yyparse(&a);
    /* Q&D WARNING: in production code this assert must be replaced by
     * real error handling. */
    assert(a);
    struct ExecEnviron* e = createEnv();
    execAst(e, a);
    freeEnv(e);
    /* TODO: destroy the AST */
}

现在该语言的解释器可以工作。请注意,该解释器有一些限制:

  • 它只有一个变量和一个函数
    • 并且函数只有一个参数
  • 值只有 int 类型,因此
  • 很难添加 goto 支持,因为对于每个 AST 元素,解释器都会调用一个解释函数。 Goto 可以通过侵入 execStmt 函数在一个块内实现,但是要在不同块或级别之间跳转,必须显着改变执行机制(这是因为无法在不同堆栈帧之间跳转)在口译员中)。例如,AST 可以转换为字节码,并且该字节码由 vm 解释。
  • 我需要查找其他一些:)

您需要为您的语言定义语法。像这样的事情(词法分析器和解析器都不完整):

/* foo.y */
%token ID IF ELSE OR AND /* First list all terminal symbols of the language */
%%

statements: /* allow empty statements */ | stm | statements ';' stm;

stm: ifStatement
   | NAME
   | NAME expList
   | label;

expList: expression | expList expression;

label: ':' NAME { /* code to store the label */ };

ifStatement: IF expression statements
           | IF expression statements ELSE statements;

expression: ID                          { /* Code to handle the found ID */ }
          | expression AND expression   { /* Code to con cat two expression with and */ }
          | expression OR expression
          | '(' expression ')';

然后使用 bison -d foo.y -o foo.c 编译此文件。 -d 开关指示 bison 生成包含解析器使用的所有标记的标头。现在您创建了词法分析器

/* bar.l */
%{
#include "foo.h"
%}

%%

IF   return IF;
ELSE return ELSE;
OR   return OR;
AND  return AND;
[A-Z]+  { /*store yylval somewhere to access it in the parser*/ return ID; }

之后,您就完成了词法分析器和解析器,并且“仅”需要为您的语言编写语义操作。

EDIT: I put the old answer to the end

Here is the promised more detailed example:

usually I begin with an example file of the desired language:

# example.toy
begin # example of the simple toy language
    x = 23;
    while x > 0 do begin
        x = x - 1;
        print(x*x);
    end;
end;

The next step is to create a lexer+parser combination where the previous file
passes.

Here comes the lexer (generate the source with flex -o lexer.c lexer.l). Also note that the lexer source depends on the parser sources (because of the TOKEN_* constants), so bison must be run before compiling the lexer source:

%option noyywrap

%{
#include "parser.h"
#include <stdlib.h>
%}

%%

"while" return TOKEN_WHILE;
"begin" return TOKEN_BEGIN;
"end"   return TOKEN_END;
"do"    return TOKEN_DO;
[a-zA-Z_][a-zA-Z0-9_]* {yylval.name = strdup(yytext); return TOKEN_ID;}
[-]?[0-9]+    {yylval.val = atoi(yytext); return TOKEN_NUMBER;}
[()=;]  {return *yytext;}
[*/+-<>] {yylval.op = *yytext; return TOKEN_OPERATOR;}
[ \t\n] {/* suppress the output of the whitespaces from the input file to stdout */}
#.* {/* one-line comment */}

and the parser (compile with bison -d -o parser.c parser.y, the -d tells bison to create the parser.h header file with some stuff the lexer needs)

%error-verbose /* instruct bison to generate verbose error messages*/
%{
/* enable debugging of the parser: when yydebug is set to 1 before the
 * yyparse call the parser prints a lot of messages about what it does */
#define YYDEBUG 1
%}

%union {
    int val;
    char op;
    char* name;
}

%token TOKEN_BEGIN TOKEN_END TOKEN_WHILE TOKEN_DO TOKEN_ID TOKEN_NUMBER TOKEN_OPERATOR
%start program

%{
/* Forward declarations */
void yyerror(const char* const message);


%}

%%

program: statement';';

block: TOKEN_BEGIN statements TOKEN_END;

statements:
    | statements statement ';'
    | statements block';';

statement: 
      assignment
    | whileStmt
    | block
    | call;

assignment: TOKEN_ID '=' expression;

expression: TOKEN_ID
    | TOKEN_NUMBER
    | expression TOKEN_OPERATOR expression;

whileStmt: TOKEN_WHILE expression TOKEN_DO statement;

call: TOKEN_ID '(' expression ')';

%%

#include <stdlib.h>

void yyerror(const char* const message)
{
    fprintf(stderr, "Parse error:%s\n", message);
    exit(1);
}

int main()
{
    yydebug = 0;
    yyparse();
}

After gcc parser.c lexer.c -o toylang-noop the call of toylang-noop < example.toy must run without any error. So now the parser itself works and can parse the example script.

The next step is to create a so called abstract syntax tree of the grammar. At this point I start with the augmenting of the parser by defining different types to the tokens and rules, as well as inserting rules to each parsing step.

%error-verbose /* instruct bison to generate verbose error messages*/
%{
#include "astgen.h"
#define YYDEBUG 1

/* Since the parser must return the AST, it must get a parameter where
 * the AST can be stored. The type of the parameter will be void*. */
#define YYPARSE_PARAM astDest
%}

%union {
    int val;
    char op;
    char* name;
    struct AstElement* ast; /* this is the new member to store AST elements */
}

%token TOKEN_BEGIN TOKEN_END TOKEN_WHILE TOKEN_DO
%token<name> TOKEN_ID
%token<val> TOKEN_NUMBER
%token<op> TOKEN_OPERATOR
%type<ast> program block statements statement assignment expression whileStmt call
%start program

%{
/* Forward declarations */
void yyerror(const char* const message);


%}

%%

program: statement';' { (*(struct AstElement**)astDest) = $1; };

block: TOKEN_BEGIN statements TOKEN_END{ $ = $2; };

statements: {$=0;}
    | statements statement ';' {$=makeStatement($1, $2);}
    | statements block';' {$=makeStatement($1, $2);};

statement: 
      assignment {$=$1;}
    | whileStmt {$=$1;}
    | block {$=$1;}
    | call {$=$1;}

assignment: TOKEN_ID '=' expression {$=makeAssignment($1, $3);}

expression: TOKEN_ID {$=makeExpByName($1);}
    | TOKEN_NUMBER {$=makeExpByNum($1);}
    | expression TOKEN_OPERATOR expression {$=makeExp($1, $3, $2);}

whileStmt: TOKEN_WHILE expression TOKEN_DO statement{$=makeWhile($2, $4);};

call: TOKEN_ID '(' expression ')' {$=makeCall($1, $3);};

%%

#include "astexec.h"
#include <stdlib.h>

void yyerror(const char* const message)
{
    fprintf(stderr, "Parse error:%s\n", message);
    exit(1);
}

int main()
{
    yydebug = 0;
    struct AstElement *a;
    yyparse(&a);
}

As you can see, the main part when generating the AST is to create the nodes of
the AST when a certain rule of the parser was passed. Since bison maintains a
stack of the current parsing process itself, is is only needed to assign the
current parsing status to the elements of the stack
(these are the $$=foo(bar) lines)

The target is the following structure in memory:

ekStatements
  .count = 2
  .statements
    ekAssignment
      .name = "x"
      .right
        ekNumber
          .val = 23
    ekWhile
      .cond
        ekBinExpression
        .left
          ekId
            .name = "x"
        .right
          ekNumber
            .val=0
        .op = '>'
      .statements
        ekAssignment
          .name = "x"
          .right
            ekBinExpression
              .left
                ekId
                  .name = "x"
              .right
                ekNumber
                  .val = 1
              .op = '-'
        ekCall
          .name = "print"
          .param
            ekBinExpression
              .left
                ekId
                  .name = "x"
              .right
                ekId
                  .name = "x"
              .op = '*'

To get this graph, there is the generating code needed, astgen.h:

#ifndef ASTGEN_H
#define ASTGEN_H

struct AstElement
{
    enum {ekId, ekNumber, ekBinExpression, ekAssignment, ekWhile, ekCall, ekStatements, ekLastElement} kind;
    union
    {
        int val;
        char* name;
        struct
        {
            struct AstElement *left, *right;
            char op;
        }expression;
        struct
        {
            char*name;
            struct AstElement* right;
        }assignment;
        struct
        {
            int count;
            struct AstElement** statements;
        }statements;
        struct
        {
            struct AstElement* cond;
            struct AstElement* statements;
        } whileStmt;
        struct
        {
            char* name;
            struct AstElement* param;
        }call;
    } data;
};

struct AstElement* makeAssignment(char*name, struct AstElement* val);
struct AstElement* makeExpByNum(int val);
struct AstElement* makeExpByName(char*name);
struct AstElement* makeExp(struct AstElement* left, struct AstElement* right, char op);
struct AstElement* makeStatement(struct AstElement* dest, struct AstElement* toAppend);
struct AstElement* makeWhile(struct AstElement* cond, struct AstElement* exec);
struct AstElement* makeCall(char* name, struct AstElement* param);
#endif

astgen.c:

#include "astgen.h"
#include <stdio.h>
#include <stdlib.h>
#include <assert.h>

static void* checkAlloc(size_t sz)
{
    void* result = calloc(sz, 1);
    if(!result)
    {
        fprintf(stderr, "alloc failed\n");
        exit(1);
    }
}

struct AstElement* makeAssignment( char*name, struct AstElement* val)
{
    struct AstElement* result = checkAlloc(sizeof(*result));
    result->kind = ekAssignment;
    result->data.assignment.name = name;
    result->data.assignment.right = val;
    return result;
}

struct AstElement* makeExpByNum(int val)
{
    struct AstElement* result = checkAlloc(sizeof(*result));
    result->kind = ekNumber;
    result->data.val = val;
    return result;
}

struct AstElement* makeExpByName(char*name)
{
    struct AstElement* result = checkAlloc(sizeof(*result));
    result->kind = ekId;
    result->data.name = name;
    return result;
}

struct AstElement* makeExp(struct AstElement* left, struct AstElement* right, char op)
{
    struct AstElement* result = checkAlloc(sizeof(*result));
    result->kind = ekBinExpression;
    result->data.expression.left = left;
    result->data.expression.right = right;
    result->data.expression.op = op;
    return result;
}

struct AstElement* makeStatement(struct AstElement* result, struct AstElement* toAppend)
{
    if(!result)
    {
        result = checkAlloc(sizeof(*result));
        result->kind = ekStatements;
        result->data.statements.count = 0;
        result->data.statements.statements = 0;
    }
    assert(ekStatements == result->kind);
    result->data.statements.count++;
    result->data.statements.statements = realloc(result->data.statements.statements, result->data.statements.count*sizeof(*result->data.statements.statements));
    result->data.statements.statements[result->data.statements.count-1] = toAppend;
    return result;
}

struct AstElement* makeWhile(struct AstElement* cond, struct AstElement* exec)
{
    struct AstElement* result = checkAlloc(sizeof(*result));
    result->kind = ekWhile;
    result->data.whileStmt.cond = cond;
    result->data.whileStmt.statements = exec;
    return result;
}

struct AstElement* makeCall(char* name, struct AstElement* param)
{
    struct AstElement* result = checkAlloc(sizeof(*result));
    result->kind = ekCall;
    result->data.call.name = name;
    result->data.call.param = param;
    return result;
}

You can see here that the generating of the AST elements is a rather monotone
job. After the step is done, the program still does nothing, but the AST can be
viewed in a debugger.

The next step is to write the interpreter. This is astexec.h:

#ifndef ASTEXEC_H
#define ASTEXEC_H

struct AstElement;
struct ExecEnviron;

/* creates the execution engine */
struct ExecEnviron* createEnv();

/* removes the ExecEnviron */
void freeEnv(struct ExecEnviron* e);

/* executes an AST */
void execAst(struct ExecEnviron* e, struct AstElement* a);

#endif

Well, this looks friendly. The Interpreter itself is simple, despite it's
length. The most functions deals with only a particular kind of AstElement. The
correct function is selected by the dispatchExpression and dispatchStatement
functions. The dispatch functions looks for the target function in the valExecs
and runExecs arrays.

astexec.c:

#include "astexec.h"
#include "astgen.h"
#include <stdlib.h>
#include <assert.h>
#include <stdio.h>

struct ExecEnviron
{
    int x; /* The value of the x variable, a real language would have some name->value lookup table instead */
};

static int execTermExpression(struct ExecEnviron* e, struct AstElement* a);
static int execBinExp(struct ExecEnviron* e, struct AstElement* a);
static void execAssign(struct ExecEnviron* e, struct AstElement* a);
static void execWhile(struct ExecEnviron* e, struct AstElement* a);
static void execCall(struct ExecEnviron* e, struct AstElement* a);
static void execStmt(struct ExecEnviron* e, struct AstElement* a);

/* Lookup Array for AST elements which yields values */
static int(*valExecs[])(struct ExecEnviron* e, struct AstElement* a) =
{
    execTermExpression,
    execTermExpression,
    execBinExp,
    NULL,
    NULL,
    NULL,
    NULL
};

/* lookup array for non-value AST elements */
static void(*runExecs[])(struct ExecEnviron* e, struct AstElement* a) =
{
    NULL, /* ID and numbers are canonical and */
    NULL, /* don't need to be executed */
    NULL, /* a binary expression is not executed */
    execAssign,
    execWhile,
    execCall,
    execStmt,
};

/* Dispatches any value expression */
static int dispatchExpression(struct ExecEnviron* e, struct AstElement* a)
{
    assert(a);
    assert(valExecs[a->kind]);
    return valExecs[a->kind](e, a);
}

static void dispatchStatement(struct ExecEnviron* e, struct AstElement* a)
{
    assert(a);
    assert(runExecs[a->kind]);
    runExecs[a->kind](e, a);
}

static void onlyName(const char* name, const char* reference, const char* kind)
{
    if(strcmp(reference, name))
    {
        fprintf(stderr,
            "This language knows only the %s '%s', not '%s'\n",
            kind, reference, name);
        exit(1);
    }
}

static void onlyX(const char* name)
{
    onlyName(name, "x", "variable");
}

static void onlyPrint(const char* name)
{
    onlyName(name, "print", "function");
}

static int execTermExpression(struct ExecEnviron* e, struct AstElement* a)
{
    /* This function looks ugly because it handles two different kinds of
     * AstElement. I would refactor it to an execNameExp and execVal
     * function to get rid of this two if statements. */
    assert(a);
    if(ekNumber == a->kind)
    {
        return a->data.val;
    }
    else
    {
        if(ekId == a->kind)
        {
            onlyX(a->data.name);
            assert(e);
            return e->x;
        }
    }
    fprintf(stderr, "OOPS: tried to get the value of a non-expression(%d)\n", a->kind);
    exit(1);
}

static int execBinExp(struct ExecEnviron* e, struct AstElement* a)
{
    assert(ekBinExpression == a->kind);
    const int left = dispatchExpression(e, a->data.expression.left);
    const int right = dispatchExpression(e, a->data.expression.right);
    switch(a->data.expression.op)
    {
        case '+':
            return left + right;
        case '-':
            return left - right;
        case '*':
            return left * right;
        case '<':
            return left < right;
        case '>':
            return left > right;
        default:
            fprintf(stderr,  "OOPS: Unknown operator:%c\n", a->data.expression.op);
            exit(1);
    }
    /* no return here, since every switch case returns some value (or bails out) */
}

static void execAssign(struct ExecEnviron* e, struct AstElement* a)
{
    assert(a);
    assert(ekAssignment == a->kind);
    onlyX(a->data.assignment.name);
    assert(e);
    struct AstElement* r = a->data.assignment.right;
    e->x = dispatchExpression(e, r);
}

static void execWhile(struct ExecEnviron* e, struct AstElement* a)
{
    assert(a);
    assert(ekWhile == a->kind);
    struct AstElement* const c = a->data.whileStmt.cond;
    struct AstElement* const s = a->data.whileStmt.statements;
    assert(c);
    assert(s);
    while(dispatchExpression(e, c))
    {
        dispatchStatement(e, s);
    }
}

static void execCall(struct ExecEnviron* e, struct AstElement* a)
{
    assert(a);
    assert(ekCall == a->kind);
    onlyPrint(a->data.call.name);
    printf("%d\n", dispatchExpression(e, a->data.call.param));
}

static void execStmt(struct ExecEnviron* e, struct AstElement* a)
{
    assert(a);
    assert(ekStatements == a->kind);
    int i;
    for(i=0; i<a->data.statements.count; i++)
    {
        dispatchStatement(e, a->data.statements.statements[i]);
    }
}

void execAst(struct ExecEnviron* e, struct AstElement* a)
{
    dispatchStatement(e, a);
}

struct ExecEnviron* createEnv()
{
    assert(ekLastElement == (sizeof(valExecs)/sizeof(*valExecs)));
    assert(ekLastElement == (sizeof(runExecs)/sizeof(*runExecs)));
    return calloc(1, sizeof(struct ExecEnviron));
}

void freeEnv(struct ExecEnviron* e)
{
    free(e);
}

Now the interpreter is complete, and the example can be run, after the main function is updated:

#include <assert.h>

int main()
{
    yydebug = 0;
    struct AstElement *a = 0;
    yyparse(&a);
    /* Q&D WARNING: in production code this assert must be replaced by
     * real error handling. */
    assert(a);
    struct ExecEnviron* e = createEnv();
    execAst(e, a);
    freeEnv(e);
    /* TODO: destroy the AST */
}

Now the interpreter for this language works. Note that there are some limitations within this interpreter:

  • it has only one variable and one function
    • and only one parameter to a function
  • only the type int for values
  • it is difficult to add goto support, since for each AST element the interpreter calls an interpreting function. Goto can be implemented within one block by hacking something into the execStmt function, but to jump between different blocks or levels the execution machinery must be changed dramatically (this is because one can't jump between different stack frames in the interpreter). For example the AST can be transformed into byte code and this byte code is interpreted by a vm.
  • some other which I would need to lookup :)

You need to define the grammar for your language. Some thing like this (both lexer and parser are incomplete):

/* foo.y */
%token ID IF ELSE OR AND /* First list all terminal symbols of the language */
%%

statements: /* allow empty statements */ | stm | statements ';' stm;

stm: ifStatement
   | NAME
   | NAME expList
   | label;

expList: expression | expList expression;

label: ':' NAME { /* code to store the label */ };

ifStatement: IF expression statements
           | IF expression statements ELSE statements;

expression: ID                          { /* Code to handle the found ID */ }
          | expression AND expression   { /* Code to con cat two expression with and */ }
          | expression OR expression
          | '(' expression ')';

Then you compile this file with bison -d foo.y -o foo.c. The -d switch instruct bison to generate a header with all the tokens the parser uses. Now you create your lexer

/* bar.l */
%{
#include "foo.h"
%}

%%

IF   return IF;
ELSE return ELSE;
OR   return OR;
AND  return AND;
[A-Z]+  { /*store yylval somewhere to access it in the parser*/ return ID; }

After this you have your lexer and parser done, and "only" need to write the semantic actions for your language.

~没有更多了~
我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
原文