布尔代数简化
我需要将这个布尔表达式简化为最简单的形式。最简单的形式包含 3 个术语和 7 个文字。
表达是:
x'yz + w'x'z + x'y + wxy + w'y'z
我们在课堂上尝试过这个,连我们的背诵老师也想不出来。
任何帮助将不胜感激。
I need to reduce this boolean expression to its simplest form. Its given that the simplest form contains 3 terms and 7 literals.
The expression is:
x'yz + w'x'z + x'y + wxy + w'y'z
We tried this in class, and even our recitation teacher could not figure it out.
Any help would be appreciated.
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。
绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论
评论(6)
尝试将其放入卡诺地图。
Try putting it into a Karnaugh Map.
Quine-McCluskey 归约是最强大的工具之一,尽管它可能是劳动密集型的。
Quine-McCluskey reduction is one of the strongest tools for this, although it can be labor-intensive.
我对布尔代数有点生疏,但我想我已经弄清楚了如何做到这一点。我会让您完成这项工作,但基本步骤如下:
1) 将术语用
y
分组,并消除括号内的内容。再次扩展后,您将得到四个术语和十个文字。2)消除多余的术语,留下三个术语和七个文字。
提示:我首先使用卡诺图计算出答案,然后使用常规布尔代数来得出解决方案:-)
I'm a bit rusty with boolean algebra, but I think I've worked out how to do this. I'll let you do the working, but here are the basic steps:
1) Group the terms with
y
and eliminate what you can inside the brackets. Once expanded again, this will leave you with four terms and ten literals.2) Eliminate the redundant term, leaving you with three terms and seven literals.
Hint: I first worked out the answer with a Karnaugh map, and then used regular boolean algebra to get to the solution :-)
像这样:
x'y + wxy + w'y'z
Like this:
x'y + wxy + w'y'z
我们可以使用群组吗?
Can we use groups?
使用 http://www.logicminimizer.com/ 上的工具
Using tool at http://www.logicminimizer.com/