在 R 中绘制最小二乘回归图中的垂直偏移

发布于 2024-08-28 17:05:03 字数 1708 浏览 13 评论 0原文

我感兴趣的是用最小二乘回归线和将数据点连接到回归线的线段绘制图,如称为垂直偏移的图形所示: http://mathworld.wolfram.com/LeastSquaresFitting.html 替代文本
(来自 MathWorld - Wolfram 网络资源:wolfram.com)

我在这里完成了绘图和回归线:

## Dataset from http://www.apsnet.org/education/advancedplantpath/topics/RModules/doc1/04_Linear_regression.html

## Disease severity as a function of temperature

# Response variable, disease severity
diseasesev<-c(1.9,3.1,3.3,4.8,5.3,6.1,6.4,7.6,9.8,12.4)

# Predictor variable, (Centigrade)
temperature<-c(2,1,5,5,20,20,23,10,30,25)

## For convenience, the data may be formatted into a dataframe
severity <- as.data.frame(cbind(diseasesev,temperature))

## Fit a linear model for the data and summarize the output from function lm()
severity.lm <- lm(diseasesev~temperature,data=severity)

# Take a look at the data
plot(
 diseasesev~temperature,
        data=severity,
        xlab="Temperature",
        ylab="% Disease Severity",
        pch=16,
        pty="s",
        xlim=c(0,30),
        ylim=c(0,30)
)
abline(severity.lm,lty=1)
title(main="Graph of % Disease Severity vs Temperature")

我应该使用某种 for 循环和段 http://www.iiap.res.in/astrostat/School07/R/html/graphics/html/segments.html 执行以下操作垂直偏移?有更有效的方法吗?如果可能,请提供示例。

I'm interested in making a plot with a least squares regression line and line segments connecting the datapoints to the regression line as illustrated here in the graphic called perpendicular offsets:
http://mathworld.wolfram.com/LeastSquaresFitting.html
alt text
(from MathWorld - A Wolfram Web Resource: wolfram.com)

I have the plot and regression line done here:

## Dataset from http://www.apsnet.org/education/advancedplantpath/topics/RModules/doc1/04_Linear_regression.html

## Disease severity as a function of temperature

# Response variable, disease severity
diseasesev<-c(1.9,3.1,3.3,4.8,5.3,6.1,6.4,7.6,9.8,12.4)

# Predictor variable, (Centigrade)
temperature<-c(2,1,5,5,20,20,23,10,30,25)

## For convenience, the data may be formatted into a dataframe
severity <- as.data.frame(cbind(diseasesev,temperature))

## Fit a linear model for the data and summarize the output from function lm()
severity.lm <- lm(diseasesev~temperature,data=severity)

# Take a look at the data
plot(
 diseasesev~temperature,
        data=severity,
        xlab="Temperature",
        ylab="% Disease Severity",
        pch=16,
        pty="s",
        xlim=c(0,30),
        ylim=c(0,30)
)
abline(severity.lm,lty=1)
title(main="Graph of % Disease Severity vs Temperature")

Should I use some kind of for loop and segments http://www.iiap.res.in/astrostat/School07/R/html/graphics/html/segments.html to do the perpendicular offsets? Is there a more efficient way? Please provide an example if possible.

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。

评论(1

王权女流氓 2024-09-04 17:05:03

您首先需要计算出垂直线段底部的坐标,然后调用 segments 函数,该函数可以将坐标向量作为输入(不需要循环)。

perp.segment.coord <- function(x0, y0, lm.mod){
 #finds endpoint for a perpendicular segment from the point (x0,y0) to the line
 # defined by lm.mod as y=a+b*x
  a <- coef(lm.mod)[1]  #intercept
  b <- coef(lm.mod)[2]  #slope
  x1 <- (x0+b*y0-a*b)/(1+b^2)
  y1 <- a + b*x1
  list(x0=x0, y0=y0, x1=x1, y1=y1)
}

现在只需调用线段:

ss <- perp.segment.coord(temperature, diseasesev, severity.lm)
do.call(segments, ss)
#which is the same as:
segments(x0=ss$x0, x1=ss$x1, y0=ss$y0, y1=ss$y1)

请注意,除非确保绘图的 x 单位和 y 单位具有相同的表观长度(等距比例),否则结果看起来不会垂直。您可以通过使用 pty="s" 获取方形图并将 xlimylim 设置为相同范围来实现此目的。

You first need to figure out the coordinates for the base of the perpendicular segments, then call the segments function which can take vectors of coordinates as inputs (no need for a loop).

perp.segment.coord <- function(x0, y0, lm.mod){
 #finds endpoint for a perpendicular segment from the point (x0,y0) to the line
 # defined by lm.mod as y=a+b*x
  a <- coef(lm.mod)[1]  #intercept
  b <- coef(lm.mod)[2]  #slope
  x1 <- (x0+b*y0-a*b)/(1+b^2)
  y1 <- a + b*x1
  list(x0=x0, y0=y0, x1=x1, y1=y1)
}

Now just call segments:

ss <- perp.segment.coord(temperature, diseasesev, severity.lm)
do.call(segments, ss)
#which is the same as:
segments(x0=ss$x0, x1=ss$x1, y0=ss$y0, y1=ss$y1)

Note that the results will not look perpendicular unless you ensure that the x-unit and y-unit of your plot have the same apparent length (isometric scales). You can do that by using pty="s" to get a square plot and set xlim and ylim to the same range.

~没有更多了~
我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
原文