如何处理渐近线/不连续点

发布于 2024-08-27 04:31:57 字数 961 浏览 10 评论 0原文

当绘制具有不连续性/渐近线/奇异性/任何东西的图形时,是否有任何自动方法可以防止 Matplotlib 在“断点”上“连接点”? (请参阅下面的代码/图像)。
我读到 Sage 有一个看起来不错的 [detect_poles] 工具,但我真的希望它能够与 Matplotlib 一起使用。

import matplotlib.pyplot as plt 
import numpy as np
from sympy import sympify, lambdify
from sympy.abc import x

fig = plt.figure(1) 
ax = fig.add_subplot(111) 

# set up axis 
ax.spines['left'].set_position('zero') 
ax.spines['right'].set_color('none') 
ax.spines['bottom'].set_position('zero') 
ax.spines['top'].set_color('none') 
ax.xaxis.set_ticks_position('bottom') 
ax.yaxis.set_ticks_position('left') 

# setup x and y ranges and precision
xx = np.arange(-0.5,5.5,0.01) 

# draw my curve 
myfunction=sympify(1/(x-2))
mylambdifiedfunction=lambdify(x,myfunction,'numpy')
ax.plot(xx, mylambdifiedfunction(xx),zorder=100,linewidth=3,color='red') 

#set bounds 
ax.set_xbound(-1,6)
ax.set_ybound(-4,4) 

plt.show()

不连续

When plotting a graph with a discontinuity/asymptote/singularity/whatever, is there any automatic way to prevent Matplotlib from 'joining the dots' across the 'break'? (please see code/image below).
I read that Sage has a [detect_poles] facility that looked good, but I really want it to work with Matplotlib.

import matplotlib.pyplot as plt 
import numpy as np
from sympy import sympify, lambdify
from sympy.abc import x

fig = plt.figure(1) 
ax = fig.add_subplot(111) 

# set up axis 
ax.spines['left'].set_position('zero') 
ax.spines['right'].set_color('none') 
ax.spines['bottom'].set_position('zero') 
ax.spines['top'].set_color('none') 
ax.xaxis.set_ticks_position('bottom') 
ax.yaxis.set_ticks_position('left') 

# setup x and y ranges and precision
xx = np.arange(-0.5,5.5,0.01) 

# draw my curve 
myfunction=sympify(1/(x-2))
mylambdifiedfunction=lambdify(x,myfunction,'numpy')
ax.plot(xx, mylambdifiedfunction(xx),zorder=100,linewidth=3,color='red') 

#set bounds 
ax.set_xbound(-1,6)
ax.set_ybound(-4,4) 

plt.show()

Discontinuity

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。

评论(4

只等公子 2024-09-03 04:31:57

通过使用屏蔽数组,您可以避免绘制曲线的选定区域。

要删除 x=2 处的奇点:

import matplotlib.numerix.ma as M    # for older versions, prior to .98
#import numpy.ma as M                # for newer versions of matplotlib
from pylab import *

figure()

xx = np.arange(-0.5,5.5,0.01) 
vals = 1/(xx-2)        
vals = M.array(vals)
mvals = M.masked_where(xx==2, vals)

subplot(121)
plot(xx, mvals, linewidth=3, color='red') 
xlim(-1,6)
ylim(-5,5) 

这条简单的曲线可能会更清楚地显示哪些点被排除:

xx = np.arange(0,6,.2) 
vals = M.array(xx)
mvals = M.masked_where(vals%2==0, vals)
subplot(122)
plot(xx, mvals, color='b', linewidth=3)
plot(xx, vals, 'rx')
show()

< img src="https://i.sstatic.net/DvJZy.png" alt="在此处输入图像描述">

By using masked arrays you can avoid plotting selected regions of a curve.

To remove the singularity at x=2:

import matplotlib.numerix.ma as M    # for older versions, prior to .98
#import numpy.ma as M                # for newer versions of matplotlib
from pylab import *

figure()

xx = np.arange(-0.5,5.5,0.01) 
vals = 1/(xx-2)        
vals = M.array(vals)
mvals = M.masked_where(xx==2, vals)

subplot(121)
plot(xx, mvals, linewidth=3, color='red') 
xlim(-1,6)
ylim(-5,5) 

This simple curve might be a bit more clear on which points are excluded:

xx = np.arange(0,6,.2) 
vals = M.array(xx)
mvals = M.masked_where(vals%2==0, vals)
subplot(122)
plot(xx, mvals, color='b', linewidth=3)
plot(xx, vals, 'rx')
show()

enter image description here

ゝ偶尔ゞ 2024-09-03 04:31:57

这可能不是您正在寻找的优雅解决方案,但如果只想要大多数情况下的结果,您可以将绘制数据的大值和小值“剪辑”为 +∞-∞分别。 Matplotlib 不会绘制这些。当然,您必须小心,不要使分辨率太低或剪切阈值太高。

utol = 100.
ltol = -100.
yy = 1/(xx-2)
yy[yy>utol] = np.inf
yy[yy<ltol] = -np.inf

ax.plot(xx, yy, zorder=100, linewidth=3, color='red') 

This may not be the elegant solution you are looking for, but if just want results for most cases, you can "clip" large and small values of your plotted data to +∞ and -∞ respectively. Matplotlib does not plot these. Of course you have to be careful not to make your resolution too low or your clipping threshold too high.

utol = 100.
ltol = -100.
yy = 1/(xx-2)
yy[yy>utol] = np.inf
yy[yy<ltol] = -np.inf

ax.plot(xx, yy, zorder=100, linewidth=3, color='red') 
心不设防 2024-09-03 04:31:57

不,我认为没有内置方法可以告诉 matplotlib 忽略这些
点。毕竟它只是连接点,对函数一无所知
或者两点之间发生了什么。

但是,您可以使用 sympy 来查找极点,然后将函数的连续部分修补在一起。这里有一些公认的丑陋代码,正是这样做的:

from pylab import *
from sympy import solve
from sympy.abc import x
from sympy.functions.elementary.complexes import im

xmin = -0.5
xmax = 5.5
xstep = 0.01

# solve for 1/f(x)=0 -- we will have poles there
discontinuities = sort(solve(1/(1/(x-2)),x))

# pieces from xmin to last discontinuity
last_b = xmin
for b in discontinuities:
    # check that this discontinuity is inside our range, also make sure it's real
    if b<last_b or b>xmax or im(b):
      continue
    xi = np.arange(last_b, b, xstep)
    plot(xi, 1./(xi-2),'r-')
    last_b = b

# from last discontinuity to xmax
xi = np.arange(last_b, xmax, xstep)
plot(xi, 1./(xi-2),'r-')

xlim(xmin, xmax)
ylim(-4,4)
show()

示例

No, I think there is no built-in way to tell matplotlib to ignore these
points. After all, it just connects points and knows nothing about functions
or what happens in between the points.

However, you can use sympy to find the poles, and then patch the continuous pieces of your function together. Here some admittedly ugly code that does exactly that:

from pylab import *
from sympy import solve
from sympy.abc import x
from sympy.functions.elementary.complexes import im

xmin = -0.5
xmax = 5.5
xstep = 0.01

# solve for 1/f(x)=0 -- we will have poles there
discontinuities = sort(solve(1/(1/(x-2)),x))

# pieces from xmin to last discontinuity
last_b = xmin
for b in discontinuities:
    # check that this discontinuity is inside our range, also make sure it's real
    if b<last_b or b>xmax or im(b):
      continue
    xi = np.arange(last_b, b, xstep)
    plot(xi, 1./(xi-2),'r-')
    last_b = b

# from last discontinuity to xmax
xi = np.arange(last_b, xmax, xstep)
plot(xi, 1./(xi-2),'r-')

xlim(xmin, xmax)
ylim(-4,4)
show()

example

公布 2024-09-03 04:31:57

有同样的问题。
我的解决方案是将 X 分成两个不同的区间:一个在奇点之前,另一个在奇点之后。在同一图上绘制单独的曲线。

Had the same issue.
The solution for me was to separate X into two different intervals: one before and the other after the singularity. The plot separate curves on the same plot.

~没有更多了~
我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
原文