物体识别的最佳工具

发布于 2024-08-26 11:23:49 字数 41 浏览 4 评论 0原文

我想做一个关于对象识别的小项目,关于这个主题有什么工具或文献建议吗?

i want to do a small project on object recognition, any any tools or literature suggestions on this topic ?

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。

评论(4

峩卟喜欢 2024-09-02 11:23:49

Opencv
alt文本http://img.amazon.ca/images/I/51wL-eaIHpL._BO2,204,203,200_PIsitb-sticker-arrow-click,TopRight,35,-76_AA300_SH20_OU15_.jpg

它是免费的,可以从c/c++使用和蟒蛇。并且有很多社区和很多基于它的示例和大学课程。

如果您有副本(或有闲钱),另一种选择是 matlab。

Opencv
alt text http://img.amazon.ca/images/I/51wL-eaIHpL._BO2,204,203,200_PIsitb-sticker-arrow-click,TopRight,35,-76_AA300_SH20_OU15_.jpg

It's free, useable from c/c++ and python. And has a lot of community and a lot of examples and college courses based on it.

An alternative if you have a copy (or some spare money) is matlab.

美男兮 2024-09-02 11:23:49

文献:

您可能需要在项目中使用图像处理技术。该领域的一本非常好的入门书籍是 Gonzalez 和伍兹。它涵盖了图像分割等主题,这是一种用于将要识别的对象与图像的其余部分分开的技术在

识别输入图像中的对象后,下一步包括找到一种方法来测量它们的相似程度是彼此。也许,最好的方法是使用图像描述符。通常,对于对象识别,最好的描述符类别是基于形状的描述符。文章“评论张 D. 和 Lu G. 的“形状表示和描述技术” 提供了关于形状描述符的精彩评论。

最后,您必须对这些对象进行分类。 Mitchell 的《机器学习》是一本经典书籍,讨论了诸如 k-NN 等技术您可以在您的项目中使用。

工具:

OpenCV 或 Matlab。我特别使用 OpenCV,并且非常喜欢它,原因如下:

  • 非常好的文档 和大量好书教程 关于它。
  • 许多分割算法的实现,例如 Otsu 方法和 Watershed。
  • 提供基本的 GUI 和媒体 IO。

Literature:

You will probably need to work with Image Processing techniques in your project. A very good introductory book to this area is the Digital Image Processing by Gonzalez and Woods. It covers topics such as image segmentation, which is a technique used to separate the objects to be recognized from the rest of the image

After you have identified the objects in the input image, the next step consists in finding a way to measure how similar they are to one another. Probably, the best way to do that is to use image descriptors. Usually, for object recognition, the best class of descriptors are the ones based on shape. The article "Review of shape representation and description techniques" by Zhang D. and Lu G. provides a great review about shape descriptors.

Finally, you have to classify those objects. [Machine Learning] by Mitchell is a classical book that discusses techniques such as k-NN that you can use in your project.

Tools:

OpenCV or Matlab. I particularly use OpenCV and I really like it for the following reasons:

与往事干杯 2024-09-02 11:23:49

一个不错的游乐场是拥有并使用Processing(http://processing.org/)和各种计算机视觉库,尤其是 OpenCV ( http://ubaa.net/shared/processing/opencv/ ) 。您不需要从内置或外部 USB 摄像头进行简单帧抓取的库,因为它开箱即用。

连接 USB 摄像头后,您可以立即开始做一些有趣的事情,因为使用 Processing 进行编程非常非常容易。我的意思是我很快就能检测和跟踪面部,而且我对这个主题没有任何背景。

A nice playground is to have and use Processing ( http://processing.org/ ) and the various computer vision libraries, especially OpenCV ( http://ubaa.net/shared/processing/opencv/ ). You don't need the libraries for simple frame grabbing from an inbuilt or external usb camera because it works out of the box.

With a connected with a USB camera you can start doing some interesting stuff straight away because programming with Processing is very, very easy. I mean I was detecting and tracking faces in no time and I have no background in the subject.

金橙橙 2024-09-02 11:23:49

还研究用于对象识别的 Adob​​e Flash。严重地。

Also research Adobe Flash for object recognition. Seriously.

~没有更多了~
我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
原文