CUDA:cudaMemcpy 仅在仿真模式下工作

发布于 2024-08-26 08:37:28 字数 636 浏览 6 评论 0原文

我刚刚开始学习如何使用 CUDA。我正在尝试运行一些简单的示例代码:


float *ah, *bh, *ad, *bd;
ah = (float *)malloc(sizeof(float)*4);
bh = (float *)malloc(sizeof(float)*4);
cudaMalloc((void **) &ad, sizeof(float)*4);
cudaMalloc((void **) &bd, sizeof(float)*4);
... initialize ah ...

/* copy array on device */
cudaMemcpy(ad,ah,sizeof(float)*N,cudaMemcpyHostToDevice);
cudaMemcpy(bd,ad,sizeof(float)*N,cudaMemcpyDeviceToDevice);
cudaMemcpy(bh,bd,sizeof(float)*N,cudaMemcpyDeviceToHost);

当我在仿真模式(nvcc -deviceemu)下运行时,它运行良好(并且实际上复制了数组)。 但是当我以常规模式运行它时,它运行时没有错误,但从不复制数据。就好像 cudaMemcpy 行被忽略了。

我做错了什么?

非常感谢, 贾森

I am just starting to learn how to use CUDA. I am trying to run some simple example code:


float *ah, *bh, *ad, *bd;
ah = (float *)malloc(sizeof(float)*4);
bh = (float *)malloc(sizeof(float)*4);
cudaMalloc((void **) &ad, sizeof(float)*4);
cudaMalloc((void **) &bd, sizeof(float)*4);
... initialize ah ...

/* copy array on device */
cudaMemcpy(ad,ah,sizeof(float)*N,cudaMemcpyHostToDevice);
cudaMemcpy(bd,ad,sizeof(float)*N,cudaMemcpyDeviceToDevice);
cudaMemcpy(bh,bd,sizeof(float)*N,cudaMemcpyDeviceToHost);

When I run in emulation mode (nvcc -deviceemu) it runs fine (and actually copies the array).
But when I run it in regular mode, it runs w/o error, but never copies the data. It's as if the cudaMemcpy lines are just ignored.

What am I doing wrong?

Thank you very much,
Jason

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。

评论(2

郁金香雨 2024-09-02 08:37:28

您应该检查错误,最好是在每个 malloc 和 memcpy 上检查错误,但只需在最后执行一次就足够了 (cudaGetErrorString(cudaGetLastError())

只是为了检查明显的情况:

  • 您确实拥有 CUDA 功能GPU,对吗?运行 deviceQuery SDK 示例来检查设备是否正常工作,并且所有驱动程序均已安装并正常工作。
  • N(在 memcpy 中)等于 4(在 malloc 中),对吧?

You should check for errors, ideally on each malloc and memcpy but just doing it once at the end will be sufficient (cudaGetErrorString(cudaGetLastError()).

Just to check the obvious:

  • You do have a CUDA capable GPU, right? Run the deviceQuery SDK sample to check the device is working correctly and all the drivers are installed and working.
  • N (in the memcpy) is equal to 4 (in the malloc), right?
好听的两个字的网名 2024-09-02 08:37:28

查看您是否有支持 CUDA 的设备。也许您可以尝试运行下面的代码,看看您得到什么信息:

#include <cstdio>

int main( void ) {
    cudaDeviceProp  prop;

    int count;
    cudaGetDeviceCount( &count );
    for (int i=0; i< count; i++) {
        cudaGetDeviceProperties( &prop, i );
        printf( "   --- General Information for device %d ---\n", i );
        printf( "Name:  %s\n", prop.name );
        printf( "Compute capability:  %d.%d\n", prop.major, prop.minor );
        printf( "Clock rate:  %d\n", prop.clockRate );
        printf( "Device copy overlap:  " );
        if (prop.deviceOverlap)
            printf( "Enabled\n" );
        else
            printf( "Disabled\n");
        printf( "Kernel execution timeout :  " );
        if (prop.kernelExecTimeoutEnabled)
            printf( "Enabled\n" );
        else
            printf( "Disabled\n" );

        printf( "   --- Memory Information for device %d ---\n", i );
        printf( "Total global mem:  %ld\n", prop.totalGlobalMem );
        printf( "Total constant Mem:  %ld\n", prop.totalConstMem );
        printf( "Max mem pitch:  %ld\n", prop.memPitch );
        printf( "Texture Alignment:  %ld\n", prop.textureAlignment );

        printf( "   --- MP Information for device %d ---\n", i );
        printf( "Multiprocessor count:  %d\n",
                    prop.multiProcessorCount );
        printf( "Shared mem per mp:  %ld\n", prop.sharedMemPerBlock );
        printf( "Registers per mp:  %d\n", prop.regsPerBlock );
        printf( "Threads in warp:  %d\n", prop.warpSize );
        printf( "Max threads per block:  %d\n",
                    prop.maxThreadsPerBlock );
        printf( "Max thread dimensions:  (%d, %d, %d)\n",
                    prop.maxThreadsDim[0], prop.maxThreadsDim[1],
                    prop.maxThreadsDim[2] );
        printf( "Max grid dimensions:  (%d, %d, %d)\n",
                    prop.maxGridSize[0], prop.maxGridSize[1],
                    prop.maxGridSize[2] );
        printf( "\n" );
    }
}

See if you have a CUDA enabled device. Probably you can try running the code below and see what info you get:

#include <cstdio>

int main( void ) {
    cudaDeviceProp  prop;

    int count;
    cudaGetDeviceCount( &count );
    for (int i=0; i< count; i++) {
        cudaGetDeviceProperties( &prop, i );
        printf( "   --- General Information for device %d ---\n", i );
        printf( "Name:  %s\n", prop.name );
        printf( "Compute capability:  %d.%d\n", prop.major, prop.minor );
        printf( "Clock rate:  %d\n", prop.clockRate );
        printf( "Device copy overlap:  " );
        if (prop.deviceOverlap)
            printf( "Enabled\n" );
        else
            printf( "Disabled\n");
        printf( "Kernel execution timeout :  " );
        if (prop.kernelExecTimeoutEnabled)
            printf( "Enabled\n" );
        else
            printf( "Disabled\n" );

        printf( "   --- Memory Information for device %d ---\n", i );
        printf( "Total global mem:  %ld\n", prop.totalGlobalMem );
        printf( "Total constant Mem:  %ld\n", prop.totalConstMem );
        printf( "Max mem pitch:  %ld\n", prop.memPitch );
        printf( "Texture Alignment:  %ld\n", prop.textureAlignment );

        printf( "   --- MP Information for device %d ---\n", i );
        printf( "Multiprocessor count:  %d\n",
                    prop.multiProcessorCount );
        printf( "Shared mem per mp:  %ld\n", prop.sharedMemPerBlock );
        printf( "Registers per mp:  %d\n", prop.regsPerBlock );
        printf( "Threads in warp:  %d\n", prop.warpSize );
        printf( "Max threads per block:  %d\n",
                    prop.maxThreadsPerBlock );
        printf( "Max thread dimensions:  (%d, %d, %d)\n",
                    prop.maxThreadsDim[0], prop.maxThreadsDim[1],
                    prop.maxThreadsDim[2] );
        printf( "Max grid dimensions:  (%d, %d, %d)\n",
                    prop.maxGridSize[0], prop.maxGridSize[1],
                    prop.maxGridSize[2] );
        printf( "\n" );
    }
}
~没有更多了~
我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
原文