在Python中动态评估简单的布尔逻辑

发布于 2024-08-25 04:56:36 字数 435 浏览 8 评论 0原文

我有一些动态生成的布尔逻辑表达式,例如:

  • (A 或 B) 和 (C 或 D)
  • A 或 (A 和 B)
  • A
  • 空 - 计算结果为 True

占位符被替换为布尔值。我应该

  1. 将此信息转换为 Python 表达式,例如 True or (True or False)eval 吗?
  2. 创建一个二叉树,其中节点是 boolConjunction/Disjunction 对象并递归地评估它?
  3. 将其转换为嵌套的 S 表达式并使用 Lisp 解析器?
  4. 还有别的事吗?

欢迎提出建议。

I've got some dynamically-generated boolean logic expressions, like:

  • (A or B) and (C or D)
  • A or (A and B)
  • A
  • empty - evaluates to True

The placeholders get replaced with booleans. Should I,

  1. Convert this information to a Python expression like True or (True or False) and eval it?
  2. Create a binary tree where a node is either a bool or Conjunction/Disjunction object and recursively evaluate it?
  3. Convert it into nested S-expressions and use a Lisp parser?
  4. Something else?

Suggestions welcome.

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。

评论(7

一梦等七年七年为一梦 2024-09-01 04:56:36

这是我用大约一个半小时构建的一个小模块(可能有 74 行,包括空格)(加上近一个小时的重构):

str_to_token = {'True':True,
                'False':False,
                'and':lambda left, right: left and right,
                'or':lambda left, right: left or right,
                '(':'(',
                ')':')'}

empty_res = True


def create_token_lst(s, str_to_token=str_to_token):
    """create token list:
    'True or False' -> [True, lambda..., False]"""
    s = s.replace('(', ' ( ')
    s = s.replace(')', ' ) ')

    return [str_to_token[it] for it in s.split()]


def find(lst, what, start=0):
    return [i for i,it in enumerate(lst) if it == what and i >= start]


def parens(token_lst):
    """returns:
        (bool)parens_exist, left_paren_pos, right_paren_pos
    """
    left_lst = find(token_lst, '(')

    if not left_lst:
        return False, -1, -1

    left = left_lst[-1]

    #can not occur earlier, hence there are args and op.
    right = find(token_lst, ')', left + 4)[0]

    return True, left, right


def bool_eval(token_lst):
    """token_lst has length 3 and format: [left_arg, operator, right_arg]
    operator(left_arg, right_arg) is returned"""
    return token_lst[1](token_lst[0], token_lst[2])


def formatted_bool_eval(token_lst, empty_res=empty_res):
    """eval a formatted (i.e. of the form 'ToFa(ToF)') string"""
    if not token_lst:
        return empty_res

    if len(token_lst) == 1:
        return token_lst[0]

    has_parens, l_paren, r_paren = parens(token_lst)

    if not has_parens:
        return bool_eval(token_lst)

    token_lst[l_paren:r_paren + 1] = [bool_eval(token_lst[l_paren+1:r_paren])]

    return formatted_bool_eval(token_lst, bool_eval)


def nested_bool_eval(s):
    """The actual 'eval' routine,
    if 's' is empty, 'True' is returned,
    otherwise 's' is evaluated according to parentheses nesting.
    The format assumed:
        [1] 'LEFT OPERATOR RIGHT',
        where LEFT and RIGHT are either:
                True or False or '(' [1] ')' (subexpression in parentheses)
    """
    return formatted_bool_eval(create_token_lst(s))

简单的测试给出:

>>> print nested_bool_eval('')
True
>>> print nested_bool_eval('False')
False
>>> print nested_bool_eval('True or False')
True
>>> print nested_bool_eval('True and False')
False
>>> print nested_bool_eval('(True or False) and (True or False)')
True
>>> print nested_bool_eval('(True or False) and (True and False)')
False
>>> print nested_bool_eval('(True or False) or (True and False)')
True
>>> print nested_bool_eval('(True and False) or (True and False)')
False
>>> print nested_bool_eval('(True and False) or (True and (True or False))')
True

[部分偏离主题可能]

注意,您可以轻松地配置您使用的标记(操作数和运算符)以及提供的穷人依赖注入方法(token_to_char=token_to_char 和朋友)以具有多个同时使用不同的求值器(仅重置“默认注入”全局变量将使您保持单一行为)。

例如:

def fuzzy_bool_eval(s):
    """as normal, but:
    - an argument 'Maybe' may be :)) present
    - algebra is:
    [one of 'True', 'False', 'Maybe'] [one of 'or', 'and'] 'Maybe' -> 'Maybe'
    """
    Maybe = 'Maybe' # just an object with nice __str__

    def or_op(left, right):
        return (Maybe if Maybe in [left, right] else (left or right))

    def and_op(left, right):
        args = [left, right]

        if Maybe in args:
            if True in args:
                return Maybe # Maybe and True -> Maybe
            else:
                return False # Maybe and False -> False

        return left and right

    str_to_token = {'True':True,
                    'False':False,
                    'Maybe':Maybe,
                    'and':and_op,
                    'or':or_op,
                    '(':'(',
                    ')':')'}

    token_lst = create_token_lst(s, str_to_token=str_to_token)

    return formatted_bool_eval(token_lst)

给出:

>>> print fuzzy_bool_eval('')
True
>>> print fuzzy_bool_eval('Maybe')
Maybe
>>> print fuzzy_bool_eval('True or False')
True
>>> print fuzzy_bool_eval('True or Maybe')
Maybe
>>> print fuzzy_bool_eval('False or (False and Maybe)')
False

Here's a small (possibly, 74 lines including whitespace) module I built in about an hour and a half (plus almost an hour to refactoring):

str_to_token = {'True':True,
                'False':False,
                'and':lambda left, right: left and right,
                'or':lambda left, right: left or right,
                '(':'(',
                ')':')'}

empty_res = True


def create_token_lst(s, str_to_token=str_to_token):
    """create token list:
    'True or False' -> [True, lambda..., False]"""
    s = s.replace('(', ' ( ')
    s = s.replace(')', ' ) ')

    return [str_to_token[it] for it in s.split()]


def find(lst, what, start=0):
    return [i for i,it in enumerate(lst) if it == what and i >= start]


def parens(token_lst):
    """returns:
        (bool)parens_exist, left_paren_pos, right_paren_pos
    """
    left_lst = find(token_lst, '(')

    if not left_lst:
        return False, -1, -1

    left = left_lst[-1]

    #can not occur earlier, hence there are args and op.
    right = find(token_lst, ')', left + 4)[0]

    return True, left, right


def bool_eval(token_lst):
    """token_lst has length 3 and format: [left_arg, operator, right_arg]
    operator(left_arg, right_arg) is returned"""
    return token_lst[1](token_lst[0], token_lst[2])


def formatted_bool_eval(token_lst, empty_res=empty_res):
    """eval a formatted (i.e. of the form 'ToFa(ToF)') string"""
    if not token_lst:
        return empty_res

    if len(token_lst) == 1:
        return token_lst[0]

    has_parens, l_paren, r_paren = parens(token_lst)

    if not has_parens:
        return bool_eval(token_lst)

    token_lst[l_paren:r_paren + 1] = [bool_eval(token_lst[l_paren+1:r_paren])]

    return formatted_bool_eval(token_lst, bool_eval)


def nested_bool_eval(s):
    """The actual 'eval' routine,
    if 's' is empty, 'True' is returned,
    otherwise 's' is evaluated according to parentheses nesting.
    The format assumed:
        [1] 'LEFT OPERATOR RIGHT',
        where LEFT and RIGHT are either:
                True or False or '(' [1] ')' (subexpression in parentheses)
    """
    return formatted_bool_eval(create_token_lst(s))

The simple tests give:

>>> print nested_bool_eval('')
True
>>> print nested_bool_eval('False')
False
>>> print nested_bool_eval('True or False')
True
>>> print nested_bool_eval('True and False')
False
>>> print nested_bool_eval('(True or False) and (True or False)')
True
>>> print nested_bool_eval('(True or False) and (True and False)')
False
>>> print nested_bool_eval('(True or False) or (True and False)')
True
>>> print nested_bool_eval('(True and False) or (True and False)')
False
>>> print nested_bool_eval('(True and False) or (True and (True or False))')
True

[Partially off-topic possibly]

Note, the you can easily configure the tokens (both operands and operators) you use with the poor-mans dependency-injection means provided (token_to_char=token_to_char and friends) to have multiple different evaluators at the same time (just resetting the "injected-by-default" globals will leave you with a single behavior).

For example:

def fuzzy_bool_eval(s):
    """as normal, but:
    - an argument 'Maybe' may be :)) present
    - algebra is:
    [one of 'True', 'False', 'Maybe'] [one of 'or', 'and'] 'Maybe' -> 'Maybe'
    """
    Maybe = 'Maybe' # just an object with nice __str__

    def or_op(left, right):
        return (Maybe if Maybe in [left, right] else (left or right))

    def and_op(left, right):
        args = [left, right]

        if Maybe in args:
            if True in args:
                return Maybe # Maybe and True -> Maybe
            else:
                return False # Maybe and False -> False

        return left and right

    str_to_token = {'True':True,
                    'False':False,
                    'Maybe':Maybe,
                    'and':and_op,
                    'or':or_op,
                    '(':'(',
                    ')':')'}

    token_lst = create_token_lst(s, str_to_token=str_to_token)

    return formatted_bool_eval(token_lst)

gives:

>>> print fuzzy_bool_eval('')
True
>>> print fuzzy_bool_eval('Maybe')
Maybe
>>> print fuzzy_bool_eval('True or False')
True
>>> print fuzzy_bool_eval('True or Maybe')
Maybe
>>> print fuzzy_bool_eval('False or (False and Maybe)')
False
只为一人 2024-09-01 04:56:36

编写一个可以处理此问题的评估器应该不难,例如使用 pyparsing。您只需处理一些操作(与、或和分组?),因此您应该能够自己解析和评估它。

您不需要显式地形成二叉树来计算表达式。

It shouldn't be difficult at all to write a evaluator that can handle this, for example using pyparsing. You only have a few operations to handle (and, or, and grouping?), so you should be able to parse and evaluate it yourself.

You shouldn't need to explicitly form the binary tree to evaluate the expression.

自控 2024-09-01 04:56:36

如果您使用您关心的本地变量和全局变量设置字典,那么您应该能够安全地将它们与表达式一起传递到 eval()

If you set up dicts with the locals and globals you care about then you should be able to safely pass them along with the expression into eval().

-小熊_ 2024-09-01 04:56:36

使用 SymPy 逻辑模块听起来像是小菜一碟。他们甚至在文档中提供了一个示例:http://docs.sympy。 org/0.7.1/modules/logic.html

Sounds like a piece of cake using SymPy logic module. They even have an example of that on the docs: http://docs.sympy.org/0.7.1/modules/logic.html

舂唻埖巳落 2024-09-01 04:56:36

我写这篇文章是因为我今天解决了类似的问题,并且当我寻找线索时我就在这里。 (带有任意字符串标记的布尔解析器,稍后会转换为布尔值)。

在考虑了不同的选择(自己实现解决方案或使用某些包)后,我决定使用 Lark, https:// /github.com/lark-parser/lark

如果您使用 LALR(1),它会很容易使用并且速度相当快

这是一个可以匹配您的语法的示例

from lark import Lark, Tree, Transformer

base_parser = Lark("""
    expr: and_expr
        | or_expr
    and_expr: token
            | "(" expr ")"
            | and_expr " " and " " and_expr
    or_expr: token
            | "(" expr ")"
            | or_expr " " or " " or_expr
    token: LETTER
    and: "and"
    or: "or"
    LETTER: /[A-Z]+/
""", start="expr")


class Cleaner(Transformer):
    def expr(self, children):
        num_children = len(children)
        if num_children == 1:
            return children[0]
        else:
            raise RuntimeError()

    def and_expr(self, children):
        num_children = len(children)
        if num_children == 1:
            return children[0]
        elif num_children == 3:
            first, middle, last = children
            return Tree(data="and_expr", children=[first, last])
        else:
            raise RuntimeError()

    def or_expr(self, children):
        num_children = len(children)
        if num_children == 1:
            return children[0]
        elif num_children == 3:
            first, middle, last = children
            return Tree(data="or_expr", children=[first, last])
        else:
            raise RuntimeError()


def get_syntax_tree(expression):
    return Cleaner().transform(base_parser.parse(expression))

print(get_syntax_tree("A and (B or C)").pretty())

注意:我选择的正则表达式与空字符串不匹配故意的(Lark 由于某种原因不允许这样做)。

I am writing this because I had a solve a similar problem today and I was here when I was looking for clues. (Boolean parser with arbitrary string tokens that get converted to boolean values later).

After considering different options (implementing a solution myself or use some package), I settled on using Lark, https://github.com/lark-parser/lark

It's easy to use and pretty fast if you use LALR(1)

Here is an example that could match your syntax

from lark import Lark, Tree, Transformer

base_parser = Lark("""
    expr: and_expr
        | or_expr
    and_expr: token
            | "(" expr ")"
            | and_expr " " and " " and_expr
    or_expr: token
            | "(" expr ")"
            | or_expr " " or " " or_expr
    token: LETTER
    and: "and"
    or: "or"
    LETTER: /[A-Z]+/
""", start="expr")


class Cleaner(Transformer):
    def expr(self, children):
        num_children = len(children)
        if num_children == 1:
            return children[0]
        else:
            raise RuntimeError()

    def and_expr(self, children):
        num_children = len(children)
        if num_children == 1:
            return children[0]
        elif num_children == 3:
            first, middle, last = children
            return Tree(data="and_expr", children=[first, last])
        else:
            raise RuntimeError()

    def or_expr(self, children):
        num_children = len(children)
        if num_children == 1:
            return children[0]
        elif num_children == 3:
            first, middle, last = children
            return Tree(data="or_expr", children=[first, last])
        else:
            raise RuntimeError()


def get_syntax_tree(expression):
    return Cleaner().transform(base_parser.parse(expression))

print(get_syntax_tree("A and (B or C)").pretty())

Note: the regex I chose doesn't match the empty string on purpose (Lark for some reason doesn't allow it).

浅忆流年 2024-09-01 04:56:36

您可以使用 Lark 语法库https://github.com/lark-parser/lark

from lark import Lark, Transformer, v_args, Token, Tree
from operator import or_, and_, not_

calc_grammar = f"""
    ?start: disjunction
    ?disjunction: conjunction
        | disjunction "or" conjunction   -> {or_.__name__}
    ?conjunction: atom
        | conjunction "and" atom  -> {and_.__name__}
    ?atom: BOOLEAN_LITTERAL           -> bool_lit
         | "not" atom         -> {not_.__name__}
         | "(" disjunction ")"
    BOOLEAN_LITTERAL: TRUE | FALSE
    TRUE: "True"
    FALSE: "False"
    %import common.WS_INLINE
    %ignore WS_INLINE
"""


@v_args(inline=True)
class CalculateBoolTree(Transformer):
    or_ = or_
    not_ = not_
    and_ = and_

    allowed_value = {"True": True, "False": False}

    def bool_lit(self, val: Token) -> bool:
        return self.allowed_value[val]


calc_parser = Lark(calc_grammar, parser="lalr", transformer=CalculateBoolTree())
calc = calc_parser.parse


def eval_bool_expression(bool_expression: str) -> bool:
    return calc(bool_expression)


print(eval_bool_expression("(True or False) and (False and True)"))
print(eval_bool_expression("not (False and True)"))
print(eval_bool_expression("not True or False and True and True"))

You can perform that with Lark grammar library https://github.com/lark-parser/lark

from lark import Lark, Transformer, v_args, Token, Tree
from operator import or_, and_, not_

calc_grammar = f"""
    ?start: disjunction
    ?disjunction: conjunction
        | disjunction "or" conjunction   -> {or_.__name__}
    ?conjunction: atom
        | conjunction "and" atom  -> {and_.__name__}
    ?atom: BOOLEAN_LITTERAL           -> bool_lit
         | "not" atom         -> {not_.__name__}
         | "(" disjunction ")"
    BOOLEAN_LITTERAL: TRUE | FALSE
    TRUE: "True"
    FALSE: "False"
    %import common.WS_INLINE
    %ignore WS_INLINE
"""


@v_args(inline=True)
class CalculateBoolTree(Transformer):
    or_ = or_
    not_ = not_
    and_ = and_

    allowed_value = {"True": True, "False": False}

    def bool_lit(self, val: Token) -> bool:
        return self.allowed_value[val]


calc_parser = Lark(calc_grammar, parser="lalr", transformer=CalculateBoolTree())
calc = calc_parser.parse


def eval_bool_expression(bool_expression: str) -> bool:
    return calc(bool_expression)


print(eval_bool_expression("(True or False) and (False and True)"))
print(eval_bool_expression("not (False and True)"))
print(eval_bool_expression("not True or False and True and True"))

送你一个梦 2024-09-01 04:56:36

这可能是一个更简单的方法:

from sympy import symbols, simplify_logic

# Define symbolic variables
A, B, C, D = symbols('A B C D')

expr1 = '(A or B) and (C or D)'
expr2 = 'A or (A and B)'

def extractExpression(expr):
    expr = expr.replace('or', '|')
    expr = expr.replace('and', '&')
    expr = expr.replace('not', '~')
    return simplify_logic(expr)

expr1 = extractExpression(expr1)
expr2 = extractExpression(expr2)

expressions = [expr1, expr2]

inputs = [{A: True, B: True, C: True, D: False}, {A: False, B: True, C: True, D: False}]

# Evaluate the expression with specific values
for input in inputs:
    for expr in expressions:
        result = expr.subs(input)
        print("Simplified expression: ",expr)
        print('input: ',input)
        print('result: ', result)
        print()
        

输出:

Simplified expression:  (A & C) | (A & D) | (B & C) | (B & D)
input:  {A: True, B: True, C: True, D: False}
result:  True

Simplified expression:  A
input:  {A: True, B: True, C: True, D: False}
result:  True

Simplified expression:  (A & C) | (A & D) | (B & C) | (B & D)
input:  {A: False, B: True, C: True, D: False}
result:  True

Simplified expression:  A
input:  {A: False, B: True, C: True, D: False}
result:  False

This might be a more easier approach to this:

from sympy import symbols, simplify_logic

# Define symbolic variables
A, B, C, D = symbols('A B C D')

expr1 = '(A or B) and (C or D)'
expr2 = 'A or (A and B)'

def extractExpression(expr):
    expr = expr.replace('or', '|')
    expr = expr.replace('and', '&')
    expr = expr.replace('not', '~')
    return simplify_logic(expr)

expr1 = extractExpression(expr1)
expr2 = extractExpression(expr2)

expressions = [expr1, expr2]

inputs = [{A: True, B: True, C: True, D: False}, {A: False, B: True, C: True, D: False}]

# Evaluate the expression with specific values
for input in inputs:
    for expr in expressions:
        result = expr.subs(input)
        print("Simplified expression: ",expr)
        print('input: ',input)
        print('result: ', result)
        print()
        

Output:

Simplified expression:  (A & C) | (A & D) | (B & C) | (B & D)
input:  {A: True, B: True, C: True, D: False}
result:  True

Simplified expression:  A
input:  {A: True, B: True, C: True, D: False}
result:  True

Simplified expression:  (A & C) | (A & D) | (B & C) | (B & D)
input:  {A: False, B: True, C: True, D: False}
result:  True

Simplified expression:  A
input:  {A: False, B: True, C: True, D: False}
result:  False
~没有更多了~
我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
原文