检测贝叶斯分类器中的未知类
如果您有一个针对一组类进行训练的贝叶斯分类器,如何检测输出是否足够重要以选择一个类?这对于检测无法分配给某个类的样本很有用。我已经尝试测试类概率是否高于所有类概率的平均值+2*stddev,但我认为它不会很稳健。
If you have a bayes classifier trained for a set of classes, how to detect if the output is significant enough to choose a class? It would be useful for detecting samples wich can't be asigned to a class. I have tried testing if the class probability is above mean+2*stddev of the probabilities of all the clases, but I don't think it will be robust.
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。
绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论
评论(1)
您可以考虑对数似然比。考虑
R(C) = log(P(C|D)/P(~C| D)
,其中C
是类,D
> 是特征,那么您可能需要确保 R(C) 大于某个正值。You could consider log-likelihood ratios. Consider
R(C) = log(P(C|D)/P(~C| D)
, whereC
is the class,D
are the features. Then you probably want to ensure thatR(C)
is greater than some positive amount.