如何使用 python/numpy 计算百分位数?

发布于 2024-08-23 21:13:49 字数 70 浏览 8 评论 0原文

有没有一种方便的方法来计算序列或一维 numpy 数组的百分位数?

我正在寻找类似于Excel百分位函数的东西。

Is there a convenient way to calculate percentiles for a sequence or single-dimensional numpy array?

I am looking for something similar to Excel's percentile function.

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。

评论(12

堇色安年 2024-08-30 21:13:49

NumPy 有 np.percentile()

import numpy as np
a = np.array([1,2,3,4,5])
p = np.percentile(a, 50)  # return 50th percentile, i.e. median.
>>> print(p)
3.0

SciPy 有 scipy. stats.scoreatpercentile(),除了许多其他统计数据

NumPy has np.percentile().

import numpy as np
a = np.array([1,2,3,4,5])
p = np.percentile(a, 50)  # return 50th percentile, i.e. median.
>>> print(p)
3.0

SciPy has scipy.stats.scoreatpercentile(), in addition to many other statistical goodies.

你的往事 2024-08-30 21:13:49

顺便说一句,有一个 纯 Python 实现百分位函数,以防万一不想依赖 scipy。该函数复制如下:

## {{{ http://code.activestate.com/recipes/511478/ (r1)
import math
import functools

def percentile(N, percent, key=lambda x:x):
    """
    Find the percentile of a list of values.

    @parameter N - is a list of values. Note N MUST BE already sorted.
    @parameter percent - a float value from 0.0 to 1.0.
    @parameter key - optional key function to compute value from each element of N.

    @return - the percentile of the values
    """
    if not N:
        return None
    k = (len(N)-1) * percent
    f = math.floor(k)
    c = math.ceil(k)
    if f == c:
        return key(N[int(k)])
    d0 = key(N[int(f)]) * (c-k)
    d1 = key(N[int(c)]) * (k-f)
    return d0+d1

# median is 50th percentile.
median = functools.partial(percentile, percent=0.5)
## end of http://code.activestate.com/recipes/511478/ }}}

By the way, there is a pure-Python implementation of percentile function, in case one doesn't want to depend on scipy. The function is copied below:

## {{{ http://code.activestate.com/recipes/511478/ (r1)
import math
import functools

def percentile(N, percent, key=lambda x:x):
    """
    Find the percentile of a list of values.

    @parameter N - is a list of values. Note N MUST BE already sorted.
    @parameter percent - a float value from 0.0 to 1.0.
    @parameter key - optional key function to compute value from each element of N.

    @return - the percentile of the values
    """
    if not N:
        return None
    k = (len(N)-1) * percent
    f = math.floor(k)
    c = math.ceil(k)
    if f == c:
        return key(N[int(k)])
    d0 = key(N[int(f)]) * (c-k)
    d1 = key(N[int(c)]) * (k-f)
    return d0+d1

# median is 50th percentile.
median = functools.partial(percentile, percent=0.5)
## end of http://code.activestate.com/recipes/511478/ }}}
一场信仰旅途 2024-08-30 21:13:49

Python 3.8 开始,标准库附带 分位数作为的一部分发挥作用统计模块:

from statistics import quantiles

quantiles([1, 2, 3, 4, 5], n=100)
# [0.06, 0.12, 0.18, 0.24, 0.3, 0.36, 0.42, 0.48, 0.54, 0.6, 0.66, 0.72, 0.78, 0.84, 0.9, 0.96, 1.02, 1.08, 1.14, 1.2, 1.26, 1.32, 1.38, 1.44, 1.5, 1.56, 1.62, 1.68, 1.74, 1.8, 1.86, 1.92, 1.98, 2.04, 2.1, 2.16, 2.22, 2.28, 2.34, 2.4, 2.46, 2.52, 2.58, 2.64, 2.7, 2.76, 2.82, 2.88, 2.94, 3.0, 3.06, 3.12, 3.18, 3.24, 3.3, 3.36, 3.42, 3.48, 3.54, 3.6, 3.66, 3.72, 3.78, 3.84, 3.9, 3.96, 4.02, 4.08, 4.14, 4.2, 4.26, 4.32, 4.38, 4.44, 4.5, 4.56, 4.62, 4.68, 4.74, 4.8, 4.86, 4.92, 4.98, 5.04, 5.1, 5.16, 5.22, 5.28, 5.34, 5.4, 5.46, 5.52, 5.58, 5.64, 5.7, 5.76, 5.82, 5.88, 5.94]
quantiles([1, 2, 3, 4, 5], n=100)[49] # 50th percentile (e.g median)
# 3.0

quantiles 返回给定分布 distn - 1 个分割点列表,分隔 n > 分位数间隔(将 dist 等概率划分为 n 个连续间隔):

statistics.quantiles(dist, *, n=4, method='exclusive')

其中 n,在我们的例子中(百分位数)是 100

Starting Python 3.8, the standard library comes with the quantiles function as part of the statistics module:

from statistics import quantiles

quantiles([1, 2, 3, 4, 5], n=100)
# [0.06, 0.12, 0.18, 0.24, 0.3, 0.36, 0.42, 0.48, 0.54, 0.6, 0.66, 0.72, 0.78, 0.84, 0.9, 0.96, 1.02, 1.08, 1.14, 1.2, 1.26, 1.32, 1.38, 1.44, 1.5, 1.56, 1.62, 1.68, 1.74, 1.8, 1.86, 1.92, 1.98, 2.04, 2.1, 2.16, 2.22, 2.28, 2.34, 2.4, 2.46, 2.52, 2.58, 2.64, 2.7, 2.76, 2.82, 2.88, 2.94, 3.0, 3.06, 3.12, 3.18, 3.24, 3.3, 3.36, 3.42, 3.48, 3.54, 3.6, 3.66, 3.72, 3.78, 3.84, 3.9, 3.96, 4.02, 4.08, 4.14, 4.2, 4.26, 4.32, 4.38, 4.44, 4.5, 4.56, 4.62, 4.68, 4.74, 4.8, 4.86, 4.92, 4.98, 5.04, 5.1, 5.16, 5.22, 5.28, 5.34, 5.4, 5.46, 5.52, 5.58, 5.64, 5.7, 5.76, 5.82, 5.88, 5.94]
quantiles([1, 2, 3, 4, 5], n=100)[49] # 50th percentile (e.g median)
# 3.0

quantiles returns for a given distribution dist a list of n - 1 cut points separating the n quantile intervals (division of dist into n continuous intervals with equal probability):

statistics.quantiles(dist, *, n=4, method='exclusive')

where n, in our case (percentiles) is 100.

暮凉 2024-08-30 21:13:49
import numpy as np
a = [154, 400, 1124, 82, 94, 108]
print np.percentile(a,95) # gives the 95th percentile
import numpy as np
a = [154, 400, 1124, 82, 94, 108]
print np.percentile(a,95) # gives the 95th percentile
送舟行 2024-08-30 21:13:49

下面介绍如何不使用 numpy,仅使用 python 来计算百分位数。

import math

def percentile(data, perc: int):
    size = len(data)
    return sorted(data)[int(math.ceil((size * perc) / 100)) - 1]

percentile([10.0, 9.0, 8.0, 7.0, 6.0, 5.0, 4.0, 3.0, 2.0, 1.0], 90)
# 9.0
percentile([142, 232, 290, 120, 274, 123, 146, 113, 272, 119, 124, 277, 207], 50)
# 146

Here's how to do it without numpy, using only python to calculate the percentile.

import math

def percentile(data, perc: int):
    size = len(data)
    return sorted(data)[int(math.ceil((size * perc) / 100)) - 1]

percentile([10.0, 9.0, 8.0, 7.0, 6.0, 5.0, 4.0, 3.0, 2.0, 1.0], 90)
# 9.0
percentile([142, 232, 290, 120, 274, 123, 146, 113, 272, 119, 124, 277, 207], 50)
# 146
望她远 2024-08-30 21:13:49

我通常看到的百分位数的定义期望结果是所提供列表中的值,在该列表下面找到 P% 的值...这意味着结果必须来自集合,而不是集合元素之间的插值。为此,您可以使用更简单的函数。

def percentile(N, P):
    """
    Find the percentile of a list of values

    @parameter N - A list of values.  N must be sorted.
    @parameter P - A float value from 0.0 to 1.0

    @return - The percentile of the values.
    """
    n = int(round(P * len(N) + 0.5))
    return N[n-1]

# A = (1, 2, 3, 4, 5, 6, 7, 8, 9, 10)
# B = (15, 20, 35, 40, 50)
#
# print percentile(A, P=0.3)
# 4
# print percentile(A, P=0.8)
# 9
# print percentile(B, P=0.3)
# 20
# print percentile(B, P=0.8)
# 50

如果您希望从提供的列表中获取等于或低于 P% 的值,则使用以下简单的修改:

def percentile(N, P):
    n = int(round(P * len(N) + 0.5))
    if n > 1:
        return N[n-2]
    else:
        return N[0]

或者使用 @ijustlovemath 建议的简化:

def percentile(N, P):
    n = max(int(round(P * len(N) + 0.5)), 2)
    return N[n-2]

The definition of percentile I usually see expects as a result the value from the supplied list below which P percent of values are found... which means the result must be from the set, not an interpolation between set elements. To get that, you can use a simpler function.

def percentile(N, P):
    """
    Find the percentile of a list of values

    @parameter N - A list of values.  N must be sorted.
    @parameter P - A float value from 0.0 to 1.0

    @return - The percentile of the values.
    """
    n = int(round(P * len(N) + 0.5))
    return N[n-1]

# A = (1, 2, 3, 4, 5, 6, 7, 8, 9, 10)
# B = (15, 20, 35, 40, 50)
#
# print percentile(A, P=0.3)
# 4
# print percentile(A, P=0.8)
# 9
# print percentile(B, P=0.3)
# 20
# print percentile(B, P=0.8)
# 50

If you would rather get the value from the supplied list at or below which P percent of values are found, then use this simple modification:

def percentile(N, P):
    n = int(round(P * len(N) + 0.5))
    if n > 1:
        return N[n-2]
    else:
        return N[0]

Or with the simplification suggested by @ijustlovemath:

def percentile(N, P):
    n = max(int(round(P * len(N) + 0.5)), 2)
    return N[n-2]
水中月 2024-08-30 21:13:49

检查 scipy.stats 模块:

 scipy.stats.scoreatpercentile

check for scipy.stats module:

 scipy.stats.scoreatpercentile
风渺 2024-08-30 21:13:49

计算一维 numpy 序列或矩阵的百分位数的一种便捷方法是使用 numpy.percentile <https://docs.scipy.org/doc/numpy/reference/ generated/numpy.percentile.html>。示例:

import numpy as np

a = np.array([0,1,2,3,4,5,6,7,8,9,10])
p50 = np.percentile(a, 50) # return 50th percentile, e.g median.
p90 = np.percentile(a, 90) # return 90th percentile.
print('median = ',p50,' and p90 = ',p90) # median =  5.0  and p90 =  9.0

但是,如果数据中存在任何 NaN 值,则上述函数将不起作用。在这种情况下推荐使用的函数是 numpy.nanpercentile https://docs.scipy.org/doc/numpy/reference/ generated/numpy.nanpercentile.html>功能:

import numpy as np

a_NaN = np.array([0.,1.,2.,3.,4.,5.,6.,7.,8.,9.,10.])
a_NaN[0] = np.nan
print('a_NaN',a_NaN)
p50 = np.nanpercentile(a_NaN, 50) # return 50th percentile, e.g median.
p90 = np.nanpercentile(a_NaN, 90) # return 90th percentile.
print('median = ',p50,' and p90 = ',p90) # median =  5.5  and p90 =  9.1

在上面提供的两个选项中,您仍然可以选择插值模式。请遵循以下示例以更容易理解。

import numpy as np

b = np.array([1,2,3,4,5,6,7,8,9,10])
print('percentiles using default interpolation')
p10 = np.percentile(b, 10) # return 10th percentile.
p50 = np.percentile(b, 50) # return 50th percentile, e.g median.
p90 = np.percentile(b, 90) # return 90th percentile.
print('p10 = ',p10,', median = ',p50,' and p90 = ',p90)
#p10 =  1.9 , median =  5.5  and p90 =  9.1

print('percentiles using interpolation = ', "linear")
p10 = np.percentile(b, 10,interpolation='linear') # return 10th percentile.
p50 = np.percentile(b, 50,interpolation='linear') # return 50th percentile, e.g median.
p90 = np.percentile(b, 90,interpolation='linear') # return 90th percentile.
print('p10 = ',p10,', median = ',p50,' and p90 = ',p90)
#p10 =  1.9 , median =  5.5  and p90 =  9.1

print('percentiles using interpolation = ', "lower")
p10 = np.percentile(b, 10,interpolation='lower') # return 10th percentile.
p50 = np.percentile(b, 50,interpolation='lower') # return 50th percentile, e.g median.
p90 = np.percentile(b, 90,interpolation='lower') # return 90th percentile.
print('p10 = ',p10,', median = ',p50,' and p90 = ',p90)
#p10 =  1 , median =  5  and p90 =  9

print('percentiles using interpolation = ', "higher")
p10 = np.percentile(b, 10,interpolation='higher') # return 10th percentile.
p50 = np.percentile(b, 50,interpolation='higher') # return 50th percentile, e.g median.
p90 = np.percentile(b, 90,interpolation='higher') # return 90th percentile.
print('p10 = ',p10,', median = ',p50,' and p90 = ',p90)
#p10 =  2 , median =  6  and p90 =  10

print('percentiles using interpolation = ', "midpoint")
p10 = np.percentile(b, 10,interpolation='midpoint') # return 10th percentile.
p50 = np.percentile(b, 50,interpolation='midpoint') # return 50th percentile, e.g median.
p90 = np.percentile(b, 90,interpolation='midpoint') # return 90th percentile.
print('p10 = ',p10,', median = ',p50,' and p90 = ',p90)
#p10 =  1.5 , median =  5.5  and p90 =  9.5

print('percentiles using interpolation = ', "nearest")
p10 = np.percentile(b, 10,interpolation='nearest') # return 10th percentile.
p50 = np.percentile(b, 50,interpolation='nearest') # return 50th percentile, e.g median.
p90 = np.percentile(b, 90,interpolation='nearest') # return 90th percentile.
print('p10 = ',p10,', median = ',p50,' and p90 = ',p90)
#p10 =  2 , median =  5  and p90 =  9

如果您的输入数组仅包含整数值,您可能会对整数的百分比答案感兴趣。如果是这样,请选择插值模式,例如“较低”、“较高”或“最近”。

A convenient way to calculate percentiles for a one-dimensional numpy sequence or matrix is by using numpy.percentile <https://docs.scipy.org/doc/numpy/reference/generated/numpy.percentile.html>. Example:

import numpy as np

a = np.array([0,1,2,3,4,5,6,7,8,9,10])
p50 = np.percentile(a, 50) # return 50th percentile, e.g median.
p90 = np.percentile(a, 90) # return 90th percentile.
print('median = ',p50,' and p90 = ',p90) # median =  5.0  and p90 =  9.0

However, if there is any NaN value in your data, the above function will not be useful. The recommended function to use in that case is the numpy.nanpercentile <https://docs.scipy.org/doc/numpy/reference/generated/numpy.nanpercentile.html> function:

import numpy as np

a_NaN = np.array([0.,1.,2.,3.,4.,5.,6.,7.,8.,9.,10.])
a_NaN[0] = np.nan
print('a_NaN',a_NaN)
p50 = np.nanpercentile(a_NaN, 50) # return 50th percentile, e.g median.
p90 = np.nanpercentile(a_NaN, 90) # return 90th percentile.
print('median = ',p50,' and p90 = ',p90) # median =  5.5  and p90 =  9.1

In the two options presented above, you can still choose the interpolation mode. Follow the examples below for easier understanding.

import numpy as np

b = np.array([1,2,3,4,5,6,7,8,9,10])
print('percentiles using default interpolation')
p10 = np.percentile(b, 10) # return 10th percentile.
p50 = np.percentile(b, 50) # return 50th percentile, e.g median.
p90 = np.percentile(b, 90) # return 90th percentile.
print('p10 = ',p10,', median = ',p50,' and p90 = ',p90)
#p10 =  1.9 , median =  5.5  and p90 =  9.1

print('percentiles using interpolation = ', "linear")
p10 = np.percentile(b, 10,interpolation='linear') # return 10th percentile.
p50 = np.percentile(b, 50,interpolation='linear') # return 50th percentile, e.g median.
p90 = np.percentile(b, 90,interpolation='linear') # return 90th percentile.
print('p10 = ',p10,', median = ',p50,' and p90 = ',p90)
#p10 =  1.9 , median =  5.5  and p90 =  9.1

print('percentiles using interpolation = ', "lower")
p10 = np.percentile(b, 10,interpolation='lower') # return 10th percentile.
p50 = np.percentile(b, 50,interpolation='lower') # return 50th percentile, e.g median.
p90 = np.percentile(b, 90,interpolation='lower') # return 90th percentile.
print('p10 = ',p10,', median = ',p50,' and p90 = ',p90)
#p10 =  1 , median =  5  and p90 =  9

print('percentiles using interpolation = ', "higher")
p10 = np.percentile(b, 10,interpolation='higher') # return 10th percentile.
p50 = np.percentile(b, 50,interpolation='higher') # return 50th percentile, e.g median.
p90 = np.percentile(b, 90,interpolation='higher') # return 90th percentile.
print('p10 = ',p10,', median = ',p50,' and p90 = ',p90)
#p10 =  2 , median =  6  and p90 =  10

print('percentiles using interpolation = ', "midpoint")
p10 = np.percentile(b, 10,interpolation='midpoint') # return 10th percentile.
p50 = np.percentile(b, 50,interpolation='midpoint') # return 50th percentile, e.g median.
p90 = np.percentile(b, 90,interpolation='midpoint') # return 90th percentile.
print('p10 = ',p10,', median = ',p50,' and p90 = ',p90)
#p10 =  1.5 , median =  5.5  and p90 =  9.5

print('percentiles using interpolation = ', "nearest")
p10 = np.percentile(b, 10,interpolation='nearest') # return 10th percentile.
p50 = np.percentile(b, 50,interpolation='nearest') # return 50th percentile, e.g median.
p90 = np.percentile(b, 90,interpolation='nearest') # return 90th percentile.
print('p10 = ',p10,', median = ',p50,' and p90 = ',p90)
#p10 =  2 , median =  5  and p90 =  9

If your input array only consists of integer values, you might be interested in the percentil answer as an integer. If so, choose interpolation mode such as ‘lower’, ‘higher’, or ‘nearest’.

多彩岁月 2024-08-30 21:13:49

要计算系列的百分位数,请运行:

from scipy.stats import rankdata
import numpy as np

def calc_percentile(a, method='min'):
    if isinstance(a, list):
        a = np.asarray(a)
    return rankdata(a, method=method) / float(len(a))

例如:

a = range(20)
print {val: round(percentile, 3) for val, percentile in zip(a, calc_percentile(a))}
>>> {0: 0.05, 1: 0.1, 2: 0.15, 3: 0.2, 4: 0.25, 5: 0.3, 6: 0.35, 7: 0.4, 8: 0.45, 9: 0.5, 10: 0.55, 11: 0.6, 12: 0.65, 13: 0.7, 14: 0.75, 15: 0.8, 16: 0.85, 17: 0.9, 18: 0.95, 19: 1.0}

To calculate the percentile of a series, run:

from scipy.stats import rankdata
import numpy as np

def calc_percentile(a, method='min'):
    if isinstance(a, list):
        a = np.asarray(a)
    return rankdata(a, method=method) / float(len(a))

For example:

a = range(20)
print {val: round(percentile, 3) for val, percentile in zip(a, calc_percentile(a))}
>>> {0: 0.05, 1: 0.1, 2: 0.15, 3: 0.2, 4: 0.25, 5: 0.3, 6: 0.35, 7: 0.4, 8: 0.45, 9: 0.5, 10: 0.55, 11: 0.6, 12: 0.65, 13: 0.7, 14: 0.75, 15: 0.8, 16: 0.85, 17: 0.9, 18: 0.95, 19: 1.0}
何其悲哀 2024-08-30 21:13:49

如果您需要答案成为输入 numpy 数组的成员:

只需添加 numpy 中的百分位数函数默认将输出计算为输入中两个相邻条目的线性加权平均值向量。在某些情况下,人们可能希望返回的百分位数是向量的实际元素,在这种情况下,从 v1.9.0 开始,您可以使用“插值”选项,包括“较低”、“较高”或“最近”。

import numpy as np
x=np.random.uniform(10,size=(1000))-5.0

np.percentile(x,70) # 70th percentile

2.075966046220879

np.percentile(x,70,interpolation="nearest")

2.0729677997904314

后者是向量中的实际条目,而前者是与百分位接壤的两个向量条目的线性插值

In case you need the answer to be a member of the input numpy array:

Just to add that the percentile function in numpy by default calculates the output as a linear weighted average of the two neighboring entries in the input vector. In some cases people may want the returned percentile to be an actual element of the vector, in this case, from v1.9.0 onwards you can use the "interpolation" option, with either "lower", "higher" or "nearest".

import numpy as np
x=np.random.uniform(10,size=(1000))-5.0

np.percentile(x,70) # 70th percentile

2.075966046220879

np.percentile(x,70,interpolation="nearest")

2.0729677997904314

The latter is an actual entry in the vector, while the former is a linear interpolation of two vector entries that border the percentile

只有影子陪我不离不弃 2024-08-30 21:13:49

对于一个系列:使用描述函数

假设您有 df 以及以下列 sales 和 id。你想计算销售额的百分位,那么它的工作原理如下,

df['sales'].describe(percentiles = [0.0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1])

0.0: .0: minimum
1: maximum 
0.1 : 10th percentile and so on

for a series: used describe functions

suppose you have df with following columns sales and id. you want to calculate percentiles for sales then it works like this,

df['sales'].describe(percentiles = [0.0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1])

0.0: .0: minimum
1: maximum 
0.1 : 10th percentile and so on
撩起发的微风 2024-08-30 21:13:49

我引导数据,然后绘制 10 个样本的置信区间。置信区间显示概率介于 5% 到 95% 之间的范围。

 import pandas as pd
 import matplotlib.pyplot as plt
 import seaborn as sns
 import numpy as np
 import json
 import dc_stat_think as dcst

 data = [154, 400, 1124, 82, 94, 108]
 #print (np.percentile(data,[0.5,95])) # gives the 95th percentile

 bs_data = dcst.draw_bs_reps(data, np.mean, size=6*10)

 #print(np.reshape(bs_data,(24,6)))

 x= np.linspace(1,6,6)
 print(x)
 for (item1,item2,item3,item4,item5,item6) in bs_data.reshape((10,6)):
     line_data=[item1,item2,item3,item4,item5,item6]
     ci=np.percentile(line_data,[.025,.975])
     mean_avg=np.mean(line_data)
     fig, ax = plt.subplots()
     ax.plot(x,line_data)
     ax.fill_between(x, (line_data-ci[0]), (line_data+ci[1]), color='b', alpha=.1)
     ax.axhline(mean_avg,color='red')
     plt.show()

I bootstrap the data and then plotted out the confidence interval for 10 samples. The confidence interval shows the range where the probabilities will fall between 5 percent and 95 percent probability.

 import pandas as pd
 import matplotlib.pyplot as plt
 import seaborn as sns
 import numpy as np
 import json
 import dc_stat_think as dcst

 data = [154, 400, 1124, 82, 94, 108]
 #print (np.percentile(data,[0.5,95])) # gives the 95th percentile

 bs_data = dcst.draw_bs_reps(data, np.mean, size=6*10)

 #print(np.reshape(bs_data,(24,6)))

 x= np.linspace(1,6,6)
 print(x)
 for (item1,item2,item3,item4,item5,item6) in bs_data.reshape((10,6)):
     line_data=[item1,item2,item3,item4,item5,item6]
     ci=np.percentile(line_data,[.025,.975])
     mean_avg=np.mean(line_data)
     fig, ax = plt.subplots()
     ax.plot(x,line_data)
     ax.fill_between(x, (line_data-ci[0]), (line_data+ci[1]), color='b', alpha=.1)
     ax.axhline(mean_avg,color='red')
     plt.show()
~没有更多了~
我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
原文