递归算法的迭代版本速度较慢

发布于 2024-08-22 11:23:01 字数 4317 浏览 5 评论 0原文

我正在尝试实现 Tarjan 强连接组件(SCC)的迭代版本,为方便起见,在此处复制(来源:http://en.wikipedia.org/wiki/Tarjan%27s_strongly_connected_components_algorithm)。

Input: Graph G = (V, E)

index = 0                         // DFS node number counter 
S = empty                         // An empty stack of nodes
forall v in V do
  if (v.index is undefined)       // Start a DFS at each node
    tarjan(v)                     // we haven't visited yet

procedure tarjan(v)
  v.index = index                 // Set the depth index for v
  v.lowlink = index
  index = index + 1
  S.push(v)                       // Push v on the stack
  forall (v, v') in E do          // Consider successors of v
    if (v'.index is undefined)    // Was successor v' visited?
        tarjan(v')                // Recurse
        v.lowlink = min(v.lowlink, v'.lowlink)
    else if (v' is in S)          // Was successor v' in stack S? 
        v.lowlink = min(v.lowlink, v'.lowlink )
  if (v.lowlink == v.index)       // Is v the root of an SCC?
    print "SCC:"
    repeat
      v' = S.pop
      print v'
    until (v' == v)

我的迭代版本使用以下 Node 结构。

struct Node {
    int id; //Signed int up to 2^31 - 1 = 2,147,483,647
    int index;
    int lowlink;        
    Node *caller;                    //If you were looking at the recursive version, this is the node before the recursive call
    unsigned int vindex;             //Equivalent to the iterator in the for-loop in tarjan
    vector<Node *> *nodeVector;      //Vector of adjacent Nodes 
};

以下是我对迭代版本所做的操作:

 void Graph::runTarjan(int out[]) {  //You can ignore out. It's a 5-element array that keeps track of the largest 5 SCCs
        int index = 0;
tarStack = new stack<Node *>();
    onStack = new bool[numNodes];
  for (int n = 0; n < numNodes; n++) {
    if (nodes[n].index == unvisited) {
      tarjan_iter(&nodes[n], index);
    }
  }
}

void Graph::tarjan_iter(Node *u, int &index) {
    u->index = index;
    u->lowlink = index;
    index++;
    u->vindex = 0; 
    tarStack->push(u);
    u->caller = NULL;           //Equivalent to the node from which the recursive call would spawn.
    onStack[u->id - 1] = true;
    Node *last = u;
    while(true) {
        if(last->vindex < last->nodeVector->size()) {       //Equivalent to the check in the for-loop in the recursive version
            Node *w = (*(last->nodeVector))[last->vindex];
            last->vindex++;                                   //Equivalent to incrementing the iterator in the for-loop in the recursive version
            if(w->index == unvisited) {
                w->caller = last;                     
                w->vindex = 0;
                w->index = index;
                w->lowlink = index;
                index++;
                tarStack->push(w);
                onStack[w->id - 1] = true;
                last = w;
            } else if(onStack[w->id - 1] == true) {
                last->lowlink = min(last->lowlink, w->index);
            }
        } else {  //Equivalent to the nodeSet iterator pointing to end()
            if(last->lowlink == last->index) {
                numScc++;
                Node *top = tarStack->top();
                tarStack->pop();
                onStack[top->id - 1] = false;
                int size = 1;

                while(top->id != last->id) {
                    top = tarStack->top();
                    tarStack->pop();
                    onStack[top->id - 1] = false;
                    size++;
                }
                insertNewSCC(size);  //Ranks the size among array of 5 elements
            }

            Node *newLast = last->caller;   //Go up one recursive call
            if(newLast != NULL) {
                newLast->lowlink = min(newLast->lowlink, last->lowlink);
                last = newLast;
            } else {   //We've seen all the nodes
                break;
            }
        }
    }
}

我的迭代版本运行并提供与递归版本相同的输出。问题是迭代版本较慢,我不确定为什么。谁能给我一些关于我的实施的见解?有没有更好的方法来迭代实现递归算法?

I'm trying to implement an iterative version of Tarjan's strongly connected components (SCCs), reproduced here for your convenience (source: http://en.wikipedia.org/wiki/Tarjan%27s_strongly_connected_components_algorithm).

Input: Graph G = (V, E)

index = 0                         // DFS node number counter 
S = empty                         // An empty stack of nodes
forall v in V do
  if (v.index is undefined)       // Start a DFS at each node
    tarjan(v)                     // we haven't visited yet

procedure tarjan(v)
  v.index = index                 // Set the depth index for v
  v.lowlink = index
  index = index + 1
  S.push(v)                       // Push v on the stack
  forall (v, v') in E do          // Consider successors of v
    if (v'.index is undefined)    // Was successor v' visited?
        tarjan(v')                // Recurse
        v.lowlink = min(v.lowlink, v'.lowlink)
    else if (v' is in S)          // Was successor v' in stack S? 
        v.lowlink = min(v.lowlink, v'.lowlink )
  if (v.lowlink == v.index)       // Is v the root of an SCC?
    print "SCC:"
    repeat
      v' = S.pop
      print v'
    until (v' == v)

My iterative version uses the following Node struct.

struct Node {
    int id; //Signed int up to 2^31 - 1 = 2,147,483,647
    int index;
    int lowlink;        
    Node *caller;                    //If you were looking at the recursive version, this is the node before the recursive call
    unsigned int vindex;             //Equivalent to the iterator in the for-loop in tarjan
    vector<Node *> *nodeVector;      //Vector of adjacent Nodes 
};

Here's what I did for the iterative version:

 void Graph::runTarjan(int out[]) {  //You can ignore out. It's a 5-element array that keeps track of the largest 5 SCCs
        int index = 0;
tarStack = new stack<Node *>();
    onStack = new bool[numNodes];
  for (int n = 0; n < numNodes; n++) {
    if (nodes[n].index == unvisited) {
      tarjan_iter(&nodes[n], index);
    }
  }
}

void Graph::tarjan_iter(Node *u, int &index) {
    u->index = index;
    u->lowlink = index;
    index++;
    u->vindex = 0; 
    tarStack->push(u);
    u->caller = NULL;           //Equivalent to the node from which the recursive call would spawn.
    onStack[u->id - 1] = true;
    Node *last = u;
    while(true) {
        if(last->vindex < last->nodeVector->size()) {       //Equivalent to the check in the for-loop in the recursive version
            Node *w = (*(last->nodeVector))[last->vindex];
            last->vindex++;                                   //Equivalent to incrementing the iterator in the for-loop in the recursive version
            if(w->index == unvisited) {
                w->caller = last;                     
                w->vindex = 0;
                w->index = index;
                w->lowlink = index;
                index++;
                tarStack->push(w);
                onStack[w->id - 1] = true;
                last = w;
            } else if(onStack[w->id - 1] == true) {
                last->lowlink = min(last->lowlink, w->index);
            }
        } else {  //Equivalent to the nodeSet iterator pointing to end()
            if(last->lowlink == last->index) {
                numScc++;
                Node *top = tarStack->top();
                tarStack->pop();
                onStack[top->id - 1] = false;
                int size = 1;

                while(top->id != last->id) {
                    top = tarStack->top();
                    tarStack->pop();
                    onStack[top->id - 1] = false;
                    size++;
                }
                insertNewSCC(size);  //Ranks the size among array of 5 elements
            }

            Node *newLast = last->caller;   //Go up one recursive call
            if(newLast != NULL) {
                newLast->lowlink = min(newLast->lowlink, last->lowlink);
                last = newLast;
            } else {   //We've seen all the nodes
                break;
            }
        }
    }
}

My iterative version runs and gives me the same output as the recursive version. The problem is that the iterative version is slower, and I'm not sure why. Can anyone give me some insight on my implementation? Is there a better way to implement the recursive algorithm iteratively?

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。

评论(1

独﹏钓一江月 2024-08-29 11:23:01

递归算法使用堆栈作为存储区域。在迭代版本中,您使用一些向量,它们本身依赖于堆分配。众所周知,基于堆栈的分配非常快,因为它只是移动堆栈末尾指针的问题,而堆分配可能要慢得多。迭代版本较慢并不完全令人惊讶。

一般来说,如果手头的问题非常适合仅堆栈递归模型,那么无论如何,递归。

A recursive algorithm uses the stack as storage area. In the iterative version, you use some vectors, which themselves rely on heap allocation. Stack-based allocation is known to be very fast, since it is only a matter of moving an end-of-stack pointer, whereas heap allocation may be substantially slower. That the iterative version is slower is not fully surprising.

Generally speaking, if the problem at hand fits well within a stack-only recursive model, then, by all means, recurse.

~没有更多了~
我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
原文